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Multi-D Wavelet Filter Bank Design using
Quillen-Suslin Theorem for Laurent Polynomials

Youngmi Hur, Hyungju Park and Fang Zheng

Abstract—In this paper we present a new approach for
constructing the wavelet filter bank. Our approach enables con-
structing nonseparable multidimensional non-redundant wavelet
filter banks with FIR filters using the Quillen-Suslin Theorem for
Laurent polynomials. Our construction method presents some
advantages over the traditional methods of multidimensional
wavelet filter bank design. First, it works for any spatial dimen-
sion and for any sampling matrix. Second, it does not require the
initial lowpass filters to satisfy any additional assumption such
as interpolatory condition. Third, it provides an algorithm for
constructing a wavelet filter bank from a single lowpass filter so
that its vanishing moments are at least as many as the accuracy
number of the lowpass filter.

Index Terms—Laurent polynomials, Multi-dimensional
wavelets, Quillen-Suslin Theorem, Wavelet filter banks

I. INTRODUCTION

The main objective of this paper is to present a new ap-
proach for constructing nonseparable multidimensional (multi-
D) non-redundant wavelet filter banks (FBs). Constructing
wavelet FBs is often reduced to solving a matrix equation
with Laurent polynomial entries [1]. Connecting wavelet FBs
with the Laurent polynomial matrices is usually done by the
polyphase representation [2]. The key idea for our method
is to decompose the z-transform of filters using, instead of
the usual polyphase representation, a special type of valid
(generalized) polyphase representation [3], which we obtain
from the Quillen-Suslin Theorem for Laurent polynomials.
This new representation allows us to use the matrix analysis
techniques that were not available for the usual polyphase
representation.

Quillen-Suslin Theorem (or unimodular completion), a cel-
ebrated theorem in Algebraic Geometry, states that a unimod-
ular matrix with polynomial entries can be completed to a
square polynomial matrix of determinant 1. This result was
extended by R. G. Swan to unimodular matrices with Laurent
polynomial entries [4].
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While there have been several uses of unimodular comple-
tion in constructing multi-D FBs [5]–[9], many of them do
not provide a constructive proof for designing wavelet FBs
with general sampling matrices. Furthermore, they do not offer
an effective way of guaranteeing vanishing moments of the
resulting wavelet systems. Our method is different from these
existing methods in that it gives an algorithm to construct
multi-D wavelet FBs more readily. Our method provides an
algorithm for constructing a wavelet FB from a single lowpass
filter so that its vanishing moments are at least as many as the
accuracy number of the lowpass filter.

The wavelet representation, along with Fourier representa-
tion, has been one of the most effective data representations.
Constructing 1-D wavelets is well understood by now, but
the situation is quite different for multi-D case. The most
commonly used method for constructing multi-D wavelets
is the tensor product, but the resulting wavelets have many
unavoidable limitations. For instance, tensor product multi-D
wavelet FBs have large supports, and the tensor product has
directional preference only along the coordinate directions.

Many researches on constructing non-tensor-based multi-
D wavelet FBs or wavelets have been performed [10]–[28].
Drawbacks of existing non-tensor-based multi-D wavelet con-
structions include the following. Many of the existing methods
work only for low spatial dimensions and cannot be easily
extended to higher dimensions. Others assume that the lowpass
filters or refinable functions satisfy additional conditions such
as interpolatory condition.

Our construction method presents some advantages over
the existing (both the tensor product and non-tenor-based)
methods of multi-D wavelet construction. It works for any
spatial dimension and for any sampling matrix. Furthermore,
it does not require the initial lowpass filters to satisfy any
additional assumption such as interpolatory condition. Being a
non-tenosr-based method that works under the general setting,
our method has the potential to provide filters with smaller
support or more flexible directional features (cf. Example 1 in
Section III-B).

We now outline the rest of our paper. In Section II, we
briefly review some technical background about wavelet FBs,
unimodular completion and other relevant concepts. In Sec-
tion III, we present our main results together with examples
illustrating our findings. We summarize our results and provide
outlooks in Section IV. Appendix contains some technical
proofs.
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II. PRELIMINARIES

A. Wavelet filter banks and their polyphase representation

Let Λ be an n × n integer sampling or dilation matrix.
By definition, this means that Λ is an integer matrix and
its spectrum lies outside the closed unit disc. Throughout
the paper, we use q to denote the magnitude of det Λ, i.e.
q := |det Λ|.

A Laurent trigonometric polynomial is typically referred to
as a mask, and a mask τ with τ(0) =

√
q and τ(0) = 0 as a re-

finement mask and wavelet mask, respectively. It is well known
that refinement masks can be used to obtain refinable functions
used in wavelet construction via the cascade algorithm (or
subdivision scheme) [29] and, together with wavelet masks,
they can be used to construct wavelet systems in L2(Rn) [30].
We recall that a filter f : Zn → R is associated with a mask τ
if τ is the Fourier transform of f . A filter f is called lowpass
or refinement if ∑

k∈Zn

f(k) =
√
q,

and highpass or wavelet if∑
k∈Zn

f(k) = 0.

In this paper we consider only the finite impulse response
(FIR) filters. A FB consists of the analysis bank and the
synthesis bank, which are collections of finite number, say
p, of FIR filters linked by downsampling and upsampling
operators, respectively, with the sampling matrix Λ [31]. We
refer to a filter from the analysis bank as an analysis filter
and a filter from the synthesis bank as a synthesis filter. We
consider only the FBs that satisfy the perfect reconstruction
condition, which implies p ≥ q. We are interested in the
FB for which each of its analysis and synthesis banks has
exactly one lowpass filter and the rest of them are all highpass
filters. We refer to such a FB as a wavelet FB. A FB is called
critically sampled or non-redundant if p = q and oversampled
or redundant otherwise. Designing non-redundant wavelet FBs
is an important problem since it leads to the construction of
wavelet bases under well-understood constraints [30]–[32].

We recall that for a filter f , the number of zeros of the
Fourier transform of f at ω = 0 is referred to as the number
of (discrete) vanishing moments of the filter f [17]. Thus, a
filter f is highpass if and only if f has at least one vanishing
moment. We say that a wavelet FB has s ∈ N vanishing
moments if the minimum of all its highpass filters’ vanishing
moments is s.

We use Γ to denote a complete set of representatives of the
distinct cosets of the quotient group Zn/ΛZn containing 0, and
Γ∗ to denote a complete set of representatives of the distinct
cosets of 2π(((Λ∗)−1Zn)/Zn) containing 0. Throughout this
paper, for a matrix M , M∗ is used to denote its conjugate
transpose. We note that both the sets Γ and Γ∗ have q =
|det Λ| elements. For example, for the 2-D dyadic dilation
matrix Λ = 2I2, the sets Γ = {(0, 0), (1, 0), (0, 1), (1, 1)} and
Γ∗ = {(0, 0), (π, 0), (0, π), (π, π)} can be used. We also use
the notation

ν0 = 0, ν1, · · · , νq−1

to denote the elements of Γ.
The concept of polyphase decomposition is to transform a

filter or a signal into q filters or signals running at the sampling
rate 1/q [2]. For a given FB, let h be an analysis filter, and
g a synthesis filter. Then the polyphase decomposition of h
(respectively, g) is a set of q filters hν , ν ∈ Γ, (respectively,
gν , ν ∈ Γ) that are defined as

hν(m) := h(Λm− ν), gν(m) := g(Λm+ ν), ∀m ∈ Zn.

The z-transform ([33]) Y (z) of a filter y : Zn → R is defined
as

Y (z) := Z{y} :=
∑
m∈Zn

y(m)z−m

where for z = [z1, . . . , zn]T ∈ Cn\{0} with |z| = 1 and
m = [m1, . . . ,mn]T ∈ Zn, zm is defined to be

∏n
j=1 z

mj

j .
Here and below, T is used to represent the matrix transpose.
We note that Y (eiω), ω ∈ Tn, is the Fourier transform of y.
We let 1 := [1, · · · , 1]T be the vector of ones. The z-transforms
of the filters h and g can be written as

H(z) =
∑
ν∈Γ

zνHν(zΛ), G(z) =
∑
ν∈Γ

z−νGν(zΛ) (1)

where Gν and Hν are the z-transforms of gν and hν , and
zΛ := [zΛ1 , . . . , zΛn ]T with the column vectors Λ1, . . . ,Λn
of Λ. The polyphase representation of the filters h and g are
defined as

H(z):=[Hν0(z), Hν1(z), . . . ,Hνq−1
(z)],

G(z):=[Gν0(z), Gν1(z), . . . , Gνq−1
(z)]T .

The polyphase representation of analysis and synthesis parts
of a FB can be represented by a p× q matrix A(z) and a q×p
matrix S(z), respectively, where p is the number of filters in
each bank. In this case, the row vectors of A(z) represent the
polyphase representation of analysis filters, and the column
vectors of S(z) represent the polyphase representation of
synthesis filters. Then the perfect reconstruction condition of
the FB becomes S(z)A(z) = Iq , with p ≥ q. For non-
redundant FBs, the polyphase matrices A(z) and S(z) should
be q × q square matrices.

We now briefly review the valid polyphase representation
[3] in our context. If we define v(z) := [1, zν1 , · · · , zνq−1 ]T

to be the usual polyphase basis, then from (1), we see that the
z-transform of h can be written as

H(z) = H(zΛ)v(z).

We recall that u(z) := M(zΛ)v(z) is called a valid polyphase
basis if and only if M(z) is an invertible matrix, i.e. M(z) ∈
GLq(R[z±1]) (cf. Section II-B). Then the z-transform of the
filter can be written using the new basis as

H(z) = Hu(zΛ)u(z),

where
Hu(z) := H(z)[M(z)]−1

is called the valid (generalized) polyphase representation of
the filter h with respect to the basis u(z).



Y. HUR, Y. PARK AND F. ZHENG: MULTI-D WAVELET FILTER BANK DESIGN USING QUILLEN-SUSLIN THEOREM 3

�

� �

�
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B. Unimodular vector completion and its use in FB design

Let k be a field and let k[z±1] be the Laurent polyno-
mial ring, consisting of all Laurent polynomials in z =
[z1, . . . , zn]T with coefficients in k. We use k[z±1]q to de-
note the set of all column vectors of length q with Laurent
polynomial entries in k[z±1], and GLq(k[z±1]) to denote the
set of all invertible q × q matrices with Laurent polynomial
entries in k[z±1]. If a matrix with Laurent polynomial entries
in k[z±1] is contained in GLq(k[z±1]), then its inverse exists
uniquely and is also contained in GLq(k[z±1]). In particular,
the inverse is also a matrix with Laurent polynomial entries
in k[z±1].

A vector v = [v1, . . . , vq] with Laurent polynomial entries
is called unimodular if its entries generate 1, i.e. there exist
Laurent polynomials g1, . . . , gq such that v1g1+· · ·+vqgq = 1.
In general, a matrix with Laurent polynomial entries is called
a unimodular matrix if its maximal minors generate 1.

In 1955, Jean Pierre Serre made a conjecture regarding
vector bundles over an affine space [34]. This problem became
a daunting task for many mathematicians, and was fully
solved only in 1976, 20 years after the question was raised.
Serre’s conjecture, which is now known as the Quillen-Suslin
Theorem ([35], [36]) after the two mathematicians who inde-
pendently solved this long standing problem, asserts that any
unimodular matrix over a polynomial ring can be completed
to an invertible square matrix, i.e. a square matrix of nonzero
constant determinant. And in 1978, R.G. Swan [4] extended
this result to the case of Laurent polynomial rings.

Result 1 (Unimodular Completion, or Quillen-Suslin Theo-
rem for Laurent polynomials): Let A be a q × p unimodular
matrix, q ≥ p, with Laurent polynomial entries. Then A
can be completed to a square q × q unimodular matrix
Ā ∈ GLq(k[z±1]) by adding q − p columns to the matrix
A.

The polyphase representation of a FB consists of the Laurent
polynomials in z with real coefficients, which allows many
concepts and results in FB design to be stated in terms
of these Laurent polynomials. For example, we recall that
the two polyphase lowpass filters H(z) (analysis) and G(z)
(synthesis), or the associated filters h and g, are called
biorthogonal if H(z)G(z) = 1, which is equivalent to the
row vector H(z) or the column vector G(z) being unimodu-

lar. In such a case, G(z) (respectively, g) is called a dual
of H(z) (respectively, h). Hilbert’s Nullstellensatz ([37]) for
the Laurent polynomial ring R[z±1] says that a given row
vector H(z) = [Hν0(z), Hν1(z), . . . ,Hνq−1

(z)] is unimodular
if and only if the Laurent polynomials Hν(z), ν ∈ Γ, do
not have a nonzero complex common root. Therefore, for a
given polyphase analysis lowpass filter H(z), a dual polyphase
synthesis filter G(z) exists if and only if the components of
H(z) do not have a nonzero complex common root. For a given
unimodular polyphase analysis lowpass filter H(z), Gröbner
bases techniques ([38]) can be used to find a particular dual
polyphase synthesis lowpass filter, as well as the most general
form of dual lowpass filters.

Our method is based on the following special case of the
unimodular completion over Laurent polynomial rings:

Result 2 (Corollary of Result 1: Unimodular vector com-
pletion): Let F(z) ∈ R[z±1]q be a unimodular column vector
of length q. Then there exists an invertible q × q matrix
K(z) ∈ GLq(R[z±1]) such that K(z)F(z) = [1, 0, . . . , 0]T .

While the original proofs of Quillen-Suslin Theorem were
nonconstructive, algorithmic proofs were studied in [39]–
[41]. By using these algorithms, given a unimodular polyno-
mial vector F(z), one can compute a companion unimodular
polynomial matrix K(z) in Result 2. This algorithm was
extended to unimodular Laurent polynomial matrices in [42],
which was implemented as a part of the Maple package
QuillenSuslin by Anna Fabiańska (see http://wwwb.math.rwth-
aachen.de/QuillenSuslin/).

There have been many studies on the design of multi-D FBs
using unimodular completion (cf. Section I), but there was
little success in developing a simple construction method for
wavelet FBs, not just FBs. In other words, how one can make
sure the resulting FB to have a certain number of vanishing
moments, without much work, has been a remaining challenge
for the most part. Our approach in this paper provides an
answer to this question.

It is well known that (see, for example, [17]) the number
of vanishing moments of the non-redundant wavelet FB is
at least s if the accuracy numbers of its lowpass filters are
at least s. We recall that for a given lowpass filter f , the
number of zeros of the Fourier transform of f at ω ∈ Γ∗\{0}
is referred to as the accuracy number [31]. This number
determines the maximum degree of polynomials that can be
reproduced by the filter f and it is closely related with the
Strang-Fix order in the wavelet theory [43]. When a wavelet
FB gives rise to a wavelet system in L2(Rn), the number
of vanishing moments of the wavelet system is completely
determined by the (discrete) vanishing moments of the wavelet
FB. Therefore, for constructing multi-D wavelet bases with
a certain number of vanishing moments, we can start from
the two biorthogonal lowpass filters with prescribed accuracy
numbers. Unfortunately, this too is not easy in general and
requires great care in the construction process. Our result
(Corollary 2) presented in the next section provides a solution
to this problem.
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III. CONSTRUCTION OF MULTI-D WAVELET FBS USING
QUILLEN-SUSLIN THEOREM

In this section, we present a new method for constructing
multi-D wavelets using the Quillen-Suslin Theorem for Lau-
rent polynomials. From this method, algorithms for construct-
ing a non-redundant multi-D wavelet FB just from a single
lowpass filter can be obtained. The motivation and the main
idea of our method is presented in Section III-A, the main
results are shown in Section III-B, and the algorithms are
shown in Section III-C.

A. Motivation

Many of the existing construction methods for multi-D
wavelet systems ([17], [18], [21], [26]–[28]) assume that at
least one of the lowpass filters is interpolatory. We recall that
a lowpass filter f is interpolatory if

f(0) =
1
√
q

and f(Λm) = 0,∀m ∈ Zn\{0}.

Equivalently, the polyphase lowpass filter F(z) is interpolatory
if its first component satisfies

Fν0(z) =
1
√
q
.

It is easy to see that every polyphase interpolatory lowpass
filter F(z) is unimodular, since the dual vector can be chosen
so that its first component is

√
q and the rest are all zero.

The Laplacian pyramid (LP) representation ([44]) has been
used in many image processing applications [45]–[47]. In the
LP algorithms, if the interpolatory lowpass filter h is used for
analysis and the “lazy” interpolatory ([48]) lowpass filter g is
used for synthesis as its dual, then we have ([49])

H(z) = [
1
√
q
,Hν1(z), · · · , Hνq−1

(z)], G(z) = [
√
q, 0, · · · , 0]T

and [
G(z) Iq

] [ H(z)
Iq − G(z)H(z)

]
= Iq.

Although the above matrices can be considered as a polyphase
representation of a redundant FB, it is clear that this FB is
not a wavelet FB as the synthesis filters associated with the
column vectors of the polyphase matrix Iq do not have any
vanishing moment. A new method called the interpolatory
effortless critical representation of LP is proposed in order
to transform these LP-based redundant non-wavelet FBs to
non-redundant wavelet FBs in a remarkably simple way [26].
This new method provides a way to construct non-redundant
wavelet FBs for any dimension and any dilation. A critical
assumption for this method is that H(z) has to be essentially
interpolatory (see (23) in [26] for a precise statement of the
assumption).

A closer look at the interpolatory lowpass filter reveals
that not only its polyphase representation H(z) is unimodular,
but also it has a dual with a unit in at least one of its
components. We recall that an element in a ring is called a
unit if its multiplicative inverse lies in the ring. Scrutinizing the
techniques used in [26] shows that many arguments used there

rely on this “nice” property of analysis interpolatory lowpass
filters. Therefore, at first sight, it may appear to be difficult to
directly apply them to more general analysis lowpass filters.

On the other hand, we notice that many techniques used in
[26] work regardless of where the Laurent polynomial matrices
are coming from. The key idea of our new construction method
is to decompose the z-transform of filters using a special type
of the valid polyphase representations obtained by unimodular
vector completion over Laurent polynomial rings. In some
sense, this can be understood as a change of basis, from the
usual polyphase basis to the valid polyphase basis, in the
Laurent polynomial ring. In the next subsection, we show
exactly how this new representation is obtained.

B. Main results

Our new construction method relies on Result 2. In fact, the
following slightly modified version of Result 2 is sufficient for
the arguments in the proof and it gives more flexibility in the
construction process.

Result 3 (A slightly modified version of Result 2): Let F(z) ∈
R[z±1]q be a unimodular column vector of length q. Then
there exists an invertible q × q matrix T(z) ∈ GLq(R[z±1])
such that T(z)F(z) is a unimodular column vector that has a
unit in at least one of its components.

Our main theorem is placed below. It provides the theory
and the algorithm to construct a non-redundant wavelet FB
from a lowpass filter whose polyphase representation is uni-
modular. It uses Result 3 and part of the arguments used to
prove some results (Theorem 1 and 2) in [26]. It is also a
variant of a result1 (Theorem 1) in [50].

Theorem 1: Let h be a lowpass filter with positive accuracy.
If its polyphase representation H(z) as a row vector is uni-
modular, then there exists a non-redundant wavelet FB whose
analysis lowpass filter is h.

Proof 1: Since H(z) = [Hν0(z), . . . ,Hνq−1
(z)] is unimodu-

lar, there exists F(z) = [Fν0(z), . . . , Fνq−1
(z)]T such that

H(z)F(z) = Hν0(z)Fν0(z) + . . .+Hνq−1
(z)Fνq−1

(z) = 1.

Thus F(z) is also unimodular. By Result 3, there exists an
invertible q×q matrix T(z) ∈ GLq(R[z±1]) such that T(z)F(z)
is a unimodular vector with a unit in at least one of its
components. Without loss of generality, we assume the first
component of T(z)F(z) is a unit.

Let g be another lowpass filter with positive accuracy
that can possibly be different from h, and let G(z) :=
[Gν0(z), Gν1(z), . . . , Gνq−1(z)]T be its synthesis polyphase
representation.

From the discussion at the end of Section II-A, we see that
the z-transform of h, f and g can be written as

H(z) = H(zΛ)v(z),

F (z) = v(z)∗F(zΛ),

G(z) = v(z)∗G(zΛ),

1While the statement of Theorem 1 in [50] is correct, the proof presented
there turns out to contain an error.
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where v(z) = [1, zν1 , · · · , zνq−1 ]T is the usual polyphase basis
as before, and v(z)∗ := v(z−1)T is the conjugate transpose
of v(z).

We take the approach in [3] but extend it slightly by
allowing two different valid polyphase bases for analysis and
synthesis filters. More precisely, using the above invertible
matrix T(z), we define a new pair of valid polyphase bases
u(z) := T(zΛ)v(z) and w(z) := [T(zΛ)∗]−1v(z), and use
them instead of the usual basis v(z) to represent the z-
transform of the analysis and the synthesis filters, respectively.
For example,

H(z) = Hu(zΛ)u(z),

F (z) = w(z)∗Fw(zΛ),

G(z) = w(z)∗Gw(zΛ),

where

Hu(z) := H(z)[T(z)]−1,

Fw(z) := T(z)F(z),

Gw(z) := T(z)G(z)

are the valid polyphase representation of h, f and g with
respect to the new valid polyphase basis pair (u(z), w(z)).

Then from the fact that Fw(z) is a particular dual to Hu(z),
i.e. Hu(z)Fw(z) = H(z)F(z) = 1, we see that any column
vector of the form Gw(z) + Fw(z)(1 − Hu(z)Gw(z)) is also
dual to Hu(z). In fact, it is easy to see that the matrix identity[

Dw(z) Iq − Fw(z)Hu(z)
] [ Hu(z)

Iq − Gw(z)Hu(z)

]
= Iq

(2)
always holds true, where Dw(z) := Gw(z) + Fw(z)(1 −
Hu(z)Gw(z)).

Since Fwν0(z), the first component of Fw(z), is assumed to
be a unit, if we define

R(z) :=


1 0 0 0 0
0 c(z)Fwν0(z)
0 c(z)Fwν1(z) 1

0
...

. . .
0 c(z)Fwνq−1

(z) 1


to be the (q + 1) × (q + 1) reduction matrix with any unit
c(z) in the Laurent polynomial ring R[z±1], then the second
column of [

Dw(z) Iq − Fw(z)Hu(z)
]
R(z)

becomes a zero column vector. Since the reduction matrix
R(z) is invertible, i.e. R(z) ∈ GLq+1(R[z±1]), by inserting
R(z)[R(z)]−1 between the two matrices on the left-hand side
of (2), we get

[Dw(z), Iq−Fw(z)Hu(z)]R(z)[R(z)]−1

[
Hu(z)

Iq − Gw(z)Hu(z)

]
=Iq

(3)
By defining S(z) to be the q × q matrix obtained by deleting
the second column of the product of the first two matrices on
the left-hand side, and A(z) to be the q × q matrix obtained
by deleting the second row of the product of the last two

matrices on the left-hand side, we get a non-redundant FB
with S(z)A(z) = Iq .

Since the first row of [R(z)]−1 is [1, 0, · · · , 0], the first
row of the analysis polyphase matrix A(z) is Hu(z), which
in turn implies that the analysis lowpass filter is h in the
above non-redundant FB. In order to finish the proof, we
need to show that the non-redundant FB obtained above is a
wavelet FB. It suffices to show that both the analysis lowpass
filter h and the synthesis lowpass filter, say d, have positive
accuracy (cf. Section II-B). Since h has positive accuracy by
the assumption, we only need to show that d has positive
accuracy. Since its polyphase representation satisfies

D(z)=[T(z)]−1Dw(z)

=[T(z)]−1(Gw(z) + Fw(z)(1− Hu(z)Gw(z)))

=G(z) + F(z)(1− H(z)G(z)),

and since both h and g are assumed to have positive accuracy,
we have D(1) = G(1)+F(1)(1−H(1)G(1)) = 1√

q [1, . . . , 1]T +

F(1)(1 − 1√
q [1, . . . , 1] 1√

q [1, . . . , 1]T ) = 1√
q [1, . . . , 1]T , from

which we can conclude that d also has positive accuracy (cf.
Result 2 in [26]).
Remark 1: Although we stated Theorem 1 for the case when
the lowpass filter is used for the analysis, a similar statement
can be made for the synthesis lowpass filter.
Remark 2: It is easy to see that the converse of the statement
of Theorem 1 is also true.
Remark 3: All the filters in the resulting non-redundant
wavelet FB of Theorem 1 are FIR filters. This is because the
matrices [R(z)]−1 and [T(z)]−1 appearing in the proof have
Laurent polynomial entries in R[z±1] (cf. Section II-B).

Although the construction method developed in the above
theorem works for any dimension and for any dilation, it
is especially useful for the wavelet construction in multi-D
setting as this is where the problem gets more challenging.
We now present 2-D examples to illustrate our findings. For
simplicity, in all of our examples, we consider the dyadic
dilation and choose Γ = {(0, 0), (1, 0), (0, 1), (1, 1)}.
Example 1 (2-D wavelet FB generated from an interpo-
latory lowpass filter). Let h be the lowpass filter associated
with the bivariate piecewise-linear box spline B1,1,1 based on
the three directions (1, 0), (0, 1), and (1, 1) (see [51] for the
definition of box splines and their properties), i.e.

h :

1
4

1
4

1
4

1
2

1
4

1
4

1
4

Here and below, the number in the box represents the coeffi-
cient of the filter at the origin. Since h is interpolatory and its
polyphase representation is

H(z) = [ 1
2

1
4z
−1
1 + 1

4
1
4z
−1
2 + 1

4
1
4z
−1
1 z−1

2 + 1
4

],

we can choose F(z) = [ 2 0 0 0 ]T . If we take g = h
and T(z) = I4, then the matrix identity (2) becomes[

D(z) I4 − F(z)H(z)
] [ H(z)

I4 − H∗(z)H(z)

]
= I4 (4)
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Fig. 2. The magnitude of the frequency responses of the filters k1, k2, k3 in
Example 1.

where D(z) := H∗(z) + F(z)(1 − H(z)H∗(z)) and H∗(z) =
H(z−1)T is the conjugate transpose of H(z). Hence, from
the arguments in the proof of Theorem 1, we obtain a non-
redundant wavelet FB. Let A(z) be its analysis polyphase
matrix. Then the first row of A(z) is H(z), and the second
through the fourth rows of A(z) are the transpose of the
following column vectors − 1

8
− 1

8
z1

− 1
16
z−1
1 + 7

8
− 1

16
z1

− 1
16
z−1
2 − 1

16
z−1
2 z1 − 1

16
− 1

16
z1

− 1
16
z−1
1 z−1

2 − 1
16
z−1
2 − 1

16
− 1

16
z1

 ,
 − 1

8
− 1

8
z2

− 1
16
z−1
1 − 1

16
z−1
1 z2 − 1

16
− 1

16
z2

− 1
16
z−1
2 + 7

8
− 1

16
z2

− 1
16
z−1
1 z−1

2 − 1
16
z−1
1 − 1

16
− 1

16
z2

 ,
 − 1

8
− 1

8
z1z2

− 1
16
z−1
1 − 1

16
− 1

16
z2 − 1

16
z1z2

− 1
16
z−1
2 − 1

16
− 1

16
z1 − 1

16
z1z2

− 1
16
z−1
1 z−1

2 + 7
8
− 1

16
z1z2

 ,
respectively. Its synthesis polyphase matrix S(z) is given as α(z1, z2) − 1

2
z−1
1 − 1

2
− 1

2
z−1
2 − 1

2
− 1

2
z−1
1 z−1

2 − 1
2

1
4
+ 1

4
z1 1 0 0

1
4
+ 1

4
z2 0 1 0

1
4
+ 1

4
z1z2 0 0 1


where α(z1, z2) = 1

2 +2( 3
8−

1
16 (z−1

1 +z−1
2 +z−1

1 z−1
2 +z1+z2+

z1z2)). In particular, the three synthesis highpass filters, say
k1, k2, and k3, are directional and aligned along the directions
determined by the nonzero cosets (1, 0), (0, 1), (1, 1), i.e.,

k1 : − 1
2 1 − 1

2 k2 :

− 1
2

1

− 1
2

k3 :

− 1
2

1

− 1
2

The magnitude of the frequency responses of these highpass
filters are depicted in Figure 2.

Example 1 provides a simple way to construct a 2-D non-
redundant wavelet FB from an interpolatory lowpass filter
h, and the resulting synthesis highpass filters are directional
and very sparse. Since h is interpolatory, in principle, other
existing methods (e.g. methods in [26], [28]) that work under
the interpolatory condition may be used to give a similar
result. In the next example, we show how our method can
be used to construct a non-redundant wavelet FB from a non-
interpolatory lowpass filter h.
Example 2 (2-D wavelet FB generated from a non-
interpolatory lowpass filter). Let h be the lowpass filter
associated with the bivariate box spline B1,1,2 based on the
four directions (1, 0), (0, 1), (1, 1) and (1, 1), i.e.

h :

1
8

1
8

1
4

3
8

1
8

1
8

3
8

1
4

1
8

1
8

Then the filter h is no longer interpolatory and its polyphase
representation H(z) is [ 3

8 + 1
8z
−1
1 z−1

2 , 1
8 + 1

4z
−1
1 + 1

8z
−1
1 z−1

2 , 1
8 +

1
4z
−1
2 + 1

8z
−1
1 z−1

2 , 1
8 + 3

8z
−1
1 z−1

2 ]. We choose F(z) =
[ 3 0 0 −1 ]T as a dual of H(z). As we did in Example
1, we take g = h and T(z) = I4. Then we obtain the same
identity as in (4) of Example 1 for our new F(z) in this
example. By using the arguments in the proof of Theorem 1
again, we obtain a non-redundant wavelet FB. Let A(z) be its
analysis polyphase matrix. Then the first row of A(z) is H(z),
whereas the second through the fourth rows of A(z) are the
transpose of the following column vectors − 1

16
− 3

32
z1 − 1

32
z−1
2 − 3

64
z1z2 − 1

64
z−1
1 z−1

2
29
32

− 1
32
z1 − 1

32
z−1
1 − 1

32
z2 − 1

32
z−1
2 − 1

64
z1z2 − 1

64
z−1
1 z−1

2

− 1
32

− 1
16
z1 − 1

16
z−1
2 − 1

64
z1z2 − 1

64
z−1
1 z−1

2 − 1
16
z1z

−1
2

− 1
16

− 1
32
z1 − 3

32
z−1
2 − 1

64
z1z2 − 3

64
z−1
1 z−1

2

 ,
 − 1

16
− 1

32
z−1
1 − 3

32
z2 − 3

64
z1z2 − 1

64
z−1
1 z−1

2

− 1
32

− 1
16
z−1
1 − 1

16
z2 − 1

64
z1z2 − 1

64
z−1
1 z−1

2 − 1
16
z−1
1 z2

29
32

− 1
32
z1 − 1

32
z−1
1 − 1

32
z2 − 1

32
z−1
2 − 1

64
z1z2 − 1

64
z−1
1 z−1

2

− 1
16

− 3
32
z−1
1 − 1

32
z2 − 1

64
z1z2 − 3

64
z−1
1 z−1

2

 ,


3
16

− 5
32
z1z2 − 1

32
z−1
1 z−1

2

− 1
12

− 1
16
z−1
1 − 5

48
z2 − 5

96
z1z2 − 1

32
z−1
1 z−1

2

− 1
12

− 5
48
z1 − 1

16
z−1
2 − 5

96
z1z2 − 1

32
z−1
1 z−1

2
13
16

− 5
96
z1z2 − 3

32
z−1
1 z−1

2

 ,
respectively. The first column of its synthesis polyphase matrix
S(z) is

3
8

+ 1
8
z1z2 + 3( 1

2
− 1

16
(z−1

1 + z−1
2 + 2z−1

1 z−1
2 + z1 + z2 + 2z1z2))

1
8

+ 1
4
z1 + 1

8
z1z2

1
8

+ 1
4
z2 + 1

8
z1z2

1
8

+ 3
8
z1z2 − ( 1

2
− 1

16
(z−1

1 + z−1
2 + 2z−1

1 z−1
2 + z1 + z2 + 2z1z2))

 ,
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Fig. 3. The magnitude of the frequency responses of the filters k1, k2, k3 in
Example 2.

whereas the second through the fourth columns of S(z) are
the following column vectors − 3

8
− 3

4
z−1
1 − 3

8
z−1
1 z−1

2

1
0

1
8
+ 1

4
z−1
1 + 1

8
z−1
1 z−1

2

 ,
 − 3

8
− 3

4
z−1
2 − 3

8
z−1
1 z−1

2

0
1

1
8
+ 1

4
z−1
2 + 1

8
z−1
1 z−1

2

 ,
 − 3

8
− 9

8
z−1
1 z−1

2

0
0

9
8
+ 3

8
z−1
1 z−1

2

 ,
respectively. The three synthesis highpass filters, k1, k2, and
k3 are given as

k1 :

1
8

− 3
8

1
8

1
4

− 3
8 1 − 3

4

k2 :

1
4

1
8

− 3
4 − 3

8

1 1
8

− 3
8

k3 :

3
8

− 9
8

9
8

− 3
8

and the magnitude of their frequency responses are drawn in
Figure 3.

Below we list two corollaries of Theorem 1, whose proofs
are placed in Appendix. The first corollary says that the

accuracy number of the synthesis lowpass filter of the non-
redundant wavelet FB in Theorem 1 can be stated in terms
of the accuracy number and the flatness number of the other
filters involved in the construction. Here, the flatness number
of a filter f is defined to be the number of zeros of

√
q−F (eiω)

at ω = 0. Notice that f is a lowpass filter if and only if its
flatness number is positive.

Corollary 1: Let h be a lowpass filter with flatness βh.
Suppose that h has a dual lowpass filter. Let f be a dual
lowpass filter of h with accuracy αf , and let g be a lowpass
filter with accuracy αg and flatness βg . Suppose that the
accuracy number αg is positive. Then there exists a dual
lowpass filter d of h such that the filter d is determined entirely
from f , g, and h, and that the accuracy of the filter d is at
least min{αg, αf + βg, αf + βh}.

In the above corollary, the dual filter d has positive accuracy
since min{αg, αf +βg, αf +βh} is clearly positive, which in
turn is implied by the positivity of αg, βg , and βh. However,
min{αg, αf + βg, αf + βh} may be lagging behind αh, the
accuracy number of the lowpass filter h. In such a case, one
may want to find a dual whose accuracy number is at least
αh. The next corollary says that such a dual can always be
found.

Corollary 2: Let h be a lowpass filter with positive accuracy
αh. Suppose that h has a dual lowpass filter f . Then there
exists a dual lowpass filter d of h such that the filter d is
determined entirely from f and h, and that the accuracy of
the filter d is at least αh.

As we observed in the previous subsection, a new method
developed in [26] provides a motivation for our construc-
tion method presented in this paper. Indeed, the fact that
it is a special case of our general construction can be
shown as follows. We recall the polyphase representa-
tion of an interpolatory analysis lowpass filter is given as
H(z) = [ 1√

q , Hν1(z), · · · , Hνq−1
(z)]. Thus we can set F(z) =

[
√
q, 0, · · · , 0]T and T(z) = Iq (cf. Example 1). Therefore, in

this case, no change of basis is needed and the usual polyphase
representation is sufficient. The first matrix on the left-hand
side of identity (2) in this case becomes D(z)

0 −√qHν1(z) · · · −√qHνq−1(z)
0

Iq−1...
0

 ,
where D(z) := G(z) + F(z)(1− H(z)G(z)). The second matrix
on the left-hand side of identity (2) becomes[

H(z)
Iq − G(z)H(z)

]
.

By deleting the second column of the first matrix and the
second row of the second matrix, we obtain the non-redundant
wavelet FB in [26]. Hence our result here can be considered
as a generalization of the method in the aforementioned paper.

C. Algorithms for constructing multi-D wavelet FBs from a
single lowpass filter

Our methodology in the previous subsection is very general.
In particular, the filters f, g, and h in Corollary 1 or 2 do
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not, in general, uniquely determine the highpass filters of
the associated wavelet FB, which may not be desirable for
some applications. The following corollary provides a way to
obtain unique highpass filters given f, g, and h by choosing
the matrix T(z) in the proof of Theorem 1 to be a special
form. Its proof is placed in Appendix.

Corollary 3: Let h be a lowpass filter with accuracy αh
and flatness βh. Suppose that h has a dual lowpass filter.
Let f be a dual lowpass filter of h with accuracy αf , and
let g be a lowpass filter with accuracy αg and flatness βg .
Suppose that the accuracy numbers αh and αg are positive.
Let K(z) ∈ GLq(R[z±1]) be an invertible q × q matrix such
that K(z)H(z)T = [1, 0, · · · , 0]T where H(z) (as a row vector)
is the polyphase representation of h. Let d be the filter whose
polyphase representation is G(z) + F(z)(1− H(z)G(z)) where
G(z) and F(z) are the polyphase representation (as a column
vector) of g and f . Let k1, . . . , kq−1 and j1, . . . , jq−1 be the
filters whose polyphase representations are the 2nd through
the qth column of K(z)T and the 2nd through the qth row of
[K(z)T ]−1[Iq − F(z)H(z)][Iq − G(z)H(z)], respectively. Then
{h, j1, . . . , jq−1}, {d, k1, . . . , kq−1} form a wavelet FB with
at least min{αh, αg, αf + βg, αf + βh} vanishing moments.

The above corollary provides an algorithm to construct a
non-redundant wavelet FB just from a single lowpass filter
h, provided that h has positive accuracy and its polyphase
representation H(z) is unimodular. We note that this positive
accuracy condition on h and the unimodularity condition on
H(z) are necessary conditions for any lowpass filter to be used
for wavelet FBs. In this sense, one can say that our algorithms
below work under the minimum assumptions on the lowpass
filter h.

Algorithm 1: An algorithm for constructing a non-
redundant wavelet FB from a lowpass filter.

Input: h: a lowpass filter with positive accuracy and with
unimodular polyphase representation.

Output: d: a dual lowpass filter of h with positive accuracy.
Output: j1, . . . , jq−1, k1, . . . , kq−1: highpass filters that form

a wavelet FB, together with h and d.
Step 1: Choose a lowpass filter g with positive accuracy.
Step 2: Find a lowpass filter f that is dual to h.
Step 3: Find an invertible q × q matrix K(z) ∈ GLq(R[z±1])

such that K(z)H(z)T = [1, 0, · · · , 0]T where H(z) (as a
row vector) is the polyphase representation of h.

Step 4: Set d to be the filter whose polyphase representation
is G(z) + F(z)(1− H(z)G(z)) where G(z) and F(z) are
the polyphase representation (as a column vector) of g
and f .

Step 5: Set k1, . . . , kq−1 to be the filters whose polyphase
representations are the 2nd through the qth column
vectors of K(z)T .

Step 6: Set j1, . . . , jq−1 to be the filters whose polyphase
representations are the 2nd through the qth row vectors
of the matrix [K(z)T ]−1[Iq−F(z)H(z)][Iq−G(z)H(z)].

The above algorithm starts from a given lowpass filter h to
build a wavelet FB, whose analysis lowpass filter is h. Since

the matrices K(z), K(z)T and [K(z)T ]−1 are all contained in
GLq(R[z±1]), the resulting wavelet filters are all FIR filters.
The filter g in Step 1 is an arbitrary lowpass filter with positive
accuracy. One possible choice is to take g := h as we did in
our examples in the previous subsection. The existence of f in
Step 2 and K(z) in Step 3 is due to the facts that h has positive
accuracy and H(z) is unimodular. In fact, one can always
choose f to be the filter whose polyphase representation is
the first column vector of K(z)T once K(z) is determined.
Although algorithms for finding f and K(z) are implemented
in many mathematical softwares such as Maple, Singular and
CoCoA, the QuillenSuslin package in Maple (cf. Section II-B)
is the only implementation that we know to give a square
matrix K(z) for any unimodular H(z), which is important
for our algorithms to work through smoothly. Given h, once
specific f , g and K(z) are chosen, the wavelet FB having h as
its analysis lowpass filter is uniquely determined.

From Corollary 3, we see that the vanishing moments
of the FBs constructed following Algorithm 1 are at least
min{αh, αg, αf + βg, αf + βh}. Although this number is
clearly positive, which is enough for the FB to be a wavelet
FB, it can be lagging behind αh. By combining Corollary 3
(or Algorithm 1) with the idea used in Corollary 2, one
can obtain the following algorithm that provides wavelet FBs
whose vanishing moments are at least αh.

Algorithm 2: An algorithm for constructing a non-
redundant wavelet FB from a lowpass filter so that its
vanishing moments are at least as many as the accuracy
number of the lowpass filter.

Input: h: a lowpass filter with positive accuracy αh and with
unimodular polyphase representation.

Output: Ite: the number of iterations performed.
Output: d: a dual lowpass filter of h with positive accuracy.
Output: j1, . . . , jq−1, k1, . . . , kq−1: highpass filters that form,

together with h and d, a wavelet FB with at least αh
vanishing moments.

Step 1: Set Ite := 1 and g := h.
Step 2: Find a lowpass filter f that is dual to h.
Step 3: Find an invertible q × q matrix K(z) ∈ GLq(R[z±1])

such that K(z)H(z)T = [1, 0, · · · , 0]T where H(z) (as a
row vector) is the polyphase representation of h.

Step 4: Set d to be the filter whose polyphase representation
is G(z) + F(z)(1− H(z)G(z)) where G(z) and F(z) are
the polyphase representation (as a column vector) of g
and f .

Step 5: If αf + (Ite)βh < αh, set Ite := Ite + 1 and repeat
Step 4 with f := d. Otherwise, go to Step 6.

Step 6: Set k1, . . . , kq−1 to be the filters whose polyphase
representations are the 2nd through the qth column
vectors of K(z)T .

Step 7: Set j1, . . . , jq−1 to be the filters whose polyphase
representations are the 2nd through the qth row vectors
of the matrix [K(z)T ]−1[Iq−F(z)H(z)][Iq−G(z)H(z)].
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IV. SUMMARY AND OUTLOOK

In this paper we presented a new algebraic approach for
constructing wavelet FBs using Quillen-Suslin Theorem for
Laurent polynomials. Our method is motivated by some ex-
isting techniques that were used mostly only for interpolatory
filters (cf. Section III-A). Quillen-Suslin Theorem for Laurent
polynomials is used to transform the filters in polyphase
representation to a special form of valid polyphase represen-
tations, for which the existing matrix analysis tools can be
readily applied (cf. Section III-B). Our method works for any
dimension and for any dilation, but it would be most beneficial
for multi-D case since this is where the construction gets
more difficult. The method provides algorithms for construct-
ing multi-D wavelet FBs from a single lowpass filter with
minimal assumptions: positive accuracy and unimodularity of
the polyphase representation (cf. Section III-C).

Our findings in this paper show that constructing multi-
D wavelet FBs using the Quillen-Suslin Theorem, a well-
known result in Algebraic Geometry, offers some noteworthy
advantages over other more traditional approaches. We plan to
explore the opportunities to study other challenges in multi-D
wavelet FB construction using Algebraic Geometry techniques
in our future researches.

APPENDIX

A. Proof of Corollary 1

We first recall that a filter f has accuracy number k ∈ N if
and only if its Fourier transform F (eiω) satisfies

F (ei(ω+γ)) = O(|ω|k), (near ω = 0),

for all γ ∈ Γ∗\{0}, and it has flatness k ∈ N if and only if
√
q − F (eiω) = O(|ω|k), (near ω = 0).

From the proof of Theorem 1, we know that for any lowpass
filters h, f , and g that satisfy the assumptions of Corollary 1,
there exists a dual lowpass filter d of h whose polyphase
representation satisfies

D(z) = G(z) + F(z)(1− H(z)G(z)).

The z-transform of d is obtained via

D(z)=v(z)∗D(zΛ)

=v(z)∗G(zΛ) + v(z)∗F(zΛ)(1− H(zΛ)G(zΛ))

=G(z) + F (z)(1− H(zΛ)G(zΛ))

=G(z) + F (z)B(zΛ)

where B(z) := 1− H(z)G(z). Let z = ei(ω+γ), then

D(ei(ω+γ)) = G(ei(ω+γ)) + F (ei(ω+γ))B((ei(ω+γ))Λ).

Thus it suffices to show that

D(ei(ω+γ)) = O(|ω|min{αg,αf+βg,αf+βh})

near ω = 0, for all γ ∈ Γ∗\{0}.
From the fact that B((ei(ω+γ))Λ) = B((eiω)Λ) for all γ ∈

Γ∗\{0}, and the simple observation (cf. Appendix C in [26])

B((eiω)Λ) = 1− 1

q

∑
γ∈Γ∗

H(ei(ω+γ))G(ei(ω+γ)),

we have B((eiω)Λ)

=1− 1

q
H(eiω)G(eiω) +O(|ω|αh+αg )

=1− 1

q
(
√
q +O(|ω|βh))(

√
q +O(|ω|βg )) +O(|ω|αh+αg )

=O(|ω|min{βh,βg,αh+αg}), (near ω = 0).

Therefore

D(ei(ω+γ))=G(ei(ω+γ)) + F (ei(ω+γ))B((ei(ω+γ))Λ)

=O(|ω|αg ) +O(|ω|αf )O(|ω|min{βh,βg,αh+αg})

=O(|ω|min{αg,αf+βg,αf+βh})

near ω = 0, for all γ ∈ Γ∗\{0}.

B. Proof of Corollary 2
In this proof, we use an iterative method to construct a dual

lowpass filter d of h such that the accuracy number of d is
at least αh. For any lowpass filters h with positive accuracy
αh, if we let g := h and f be a dual lowpass filter of h, then
by Corollary 1 and its proof, we know that there exists a dual
lowpass filter d of h whose polyphase representation is

D(z) = G(z) + F(z)(1− H(z)G(z)) (5)

and its accuracy number is at least min{αg, αf + βg, αf +
βh} = min{αh, αf + βh}. If αf + βh < αh, then we set
f := d, and use this new f in (5) to construct a new d. This
new d now has accuracy number at least min{αh, αf + 2βh}.
Since βh ≥ 1, αf + 2βh is strictly larger that αf + βh, and
if αf + 2βh < αh, we can iteratively update f to be the new
d until αf + (Ite)βh ≥ αh, where Ite denotes the number
of iterations. Thus we obtain a dual lowpass filter d whose
accuracy number is at least αh.

C. Proof of Corollary 3
Since K(z)H(z)T = [1, 0, · · · , 0]T , we have H(z)K(z)T =

[1, 0, · · · , 0]. Therefore, H(z) = [1, 0, · · · , 0][K(z)T ]−1, i.e., the
first row of [K(z)T ]−1 is H(z).

Let T(z) in the proof of Theorem 1 be [K(z)T ]−1. Then
Hu(z) = H(z)[T(z)]−1 = [1, 0, · · · , 0] and the first component
of Fw(z) = T(z)F(z) is 1 since the first row of [K(z)T ]−1 is
H(z) and f is dual to h.

Then, after some calculation, we see that the product of the
first two matrices on the left-hand side of identity (3) in the
proof of Theorem 1 becomes Dw(z)

0 0 · · · 0
0 1
...

. . .
0 1

 ,
where Dw(z) := Gw(z) + Fw(z)(1− Hu(z)Gw(z)) and c(z) in
the reduction matrix R(z) is taken to be 1. The product of the
last two matrices on the left-hand side of identity (3) becomes

Hu(z)
1−Gwν0(z) 0 · · · 0

−Gwν1(z)− Fwν1(z)(1−Gwν0(z)) 1
...

. . .
−Gwνq−1

(z)− Fwνq−1
(z)(1−Gwν0(z)) 1

 .
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By deleting the second column of the first matrix and the
second row of the second matrix in the above equation, we
obtain a non-redundant FB. From Theorem 1, we know that
this FB is a wavelet FB. The analysis lowpass filter is h and the
synthesis lowpass filter d has polyphase representation D(z) =
G(z) + F(z)(1 − H(z)G(z)). From Corollary 1, we know that
the accuracy number of d is at least min{αg, αf + βg, αf +
βh}. Therefore this wavelet FB has at least min{αh, αg, αf +
βg, αf + βh} vanishing moments.

Let k1, · · · , kq−1 be the synthesis highpass filters
and j1, · · · , jq−1 be the analysis highpass filters of
the non-redundant wavelet FB that we just found. Let
e0 := [1, 0, · · · , 0]T , e1 = [0, 1, 0, · · · , 0]T , · · · , eq−1 =
[0, 0, · · · , 0, 1]T be the standard unit vectors in Rq . Then from
the synthesis side (the one derived from the first matrix of
the above matrix identity) of the non-redundant wavelet FB,
we see that the polyphase representation for the synthesis
highpass filter ki, for i = 1, · · · , q − 1, is

[T(z)]−1ei = K(z)T ei = (i+ 1)th column of K(z)T .

The polyphase representation for the analysis highpass filter
ji, for i = 1, · · · , q−1, can be obtained from the analysis side
(the one derived from the second matrix of the above matrix
identity) of the non-redundant wavelet FB. They are[(

−Gwνi(z)− F
w
νi (z)

(
1−Gwν0(z)

))
eT0 + eTi

]
T(z)

=
[(
− eTi T(z)G(z)− eTi T(z)F(z)

(
1− eT0 T(z)G(z)

))
eT0

+eTi

]
T(z)

= eTi T(z)
[
− G(z)eT0 T(z)− F(z)eT0 T(z)

+F(z)eT0 T(z)G(z)eT0 T(z) + Iq

]
= eTi T(z)

[
− G(z)H(z)− F(z)H(z) + F(z)H(z)G(z)H(z) + Iq

]
= eTi [K(z)T ]−1[Iq − F(z)H(z)][Iq − G(z)H(z)]

= (i+ 1)th row of [K(z)T ]−1[Iq − F(z)H(z)][Iq − G(z)H(z)],

for i = 1, · · · , q − 1, and this concludes the proof.
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