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WDFTC is a wavelet-based distribution-free CUSUM chart for detecting shifts in
the mean of a profile with noisy components. Exploiting a discrete wavelet trans-
form (DWT) of the mean in-control profile, WDFTC selects a reduced-dimension
vector of the associated DWT components from which the mean in-control profile
can be approximated with minimal weighted relative reconstruction error. Based on
randomly sampled Phase I (in-control) profiles, the covariance matrix of the corre-
sponding reduced-dimension DWT vectors is estimated using a matrix-regularisation
method; then the DWT vectors are aggregated (batched) so that the non-overlapping
batch means of the reduced-dimension DWT vectors have manageable covariances.
To monitor shifts in the mean profile during Phase II operation, WDFTC computes
a Hotelling’s T 2–type statistic from successive non-overlapping batch means and ap-
plies a CUSUM procedure to those statistics, where the associated control limits are
evaluated analytically from the Phase I data. Experimentation with several normal
and non-normal test processes revealed that WDFTC was competitive with existing
profile-monitoring schemes.
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1. Introduction

Rapid advancements in data-acquisition technology, such as the development of laser range
sensors, have motivated researchers and practitioners to adapt conventional statistical process
control (SPC) techniques for use with large data sets that are called profiles and that contain
information about the relationship between the following: (1) a selected quality characteristic
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(response); and (2) an input (design, decision) variable, where the input variable can be assigned
values throughout the experimental region of interest. For such data, a single realization of an
in-control process consists of n pairs {(xi,yi) : i = 1, . . . ,n} of observations that can be described
by the statistical model yi = f0(xi)+εi, where f0(·) is a given function that defines the in-control
relationship between the input variable xi and the corresponding mean response E[yi] = f0(xi);
and εi is a random noise term, which is typically assumed to be independent and identically dis-
tributed (i.i.d.) normal. This article details WDFTC, a wavelet-based distribution-free CUSUM
chart that can detect shifts in the mean of a profile data set {(xi,yi) : i = 1, . . . ,n}, where the
complexity of the functional relationship between the input variable xi and the corresponding
mean response E[yi] may require a large number n of design points to yield a sufficiently accu-
rate approximation of that relationship over the entire experimental region of interest. Moreover,
WDFTC is designed to handle situations in which the noise components {εi : i = 1, . . . ,n} asso-
ciated with a complex profile may exhibit the following anomalous properties:

• heterogeneity of variance across all the design points in the experimental region of interest;
• marked departures from normality (for example, non-zero skewness that is frequently encoun-

tered in certain types of manufacturing operations — see Stanfield et al. (2004)); and
• substantial probabilistic dependencies (for example, non-zero correlations that arise because

some of the corresponding points in the experimental region of interest are close to each other
in space or time — see Lada et al. (2002) and Stanfield et al. (2004)).

Kang and Albin (2000) monitor a semiconductor manufacturing process that is characterized
by a linear relationship between the following: (1) the expected value of the pressure y in the
chamber where etching of the wafer occurs; and (2) the set point x for the mass flow controller
that regulates the flow of gas into the etching chamber. Two quality characteristics (namely, the
intercept a0 and the slope a1 in the linear statistical model y = a0 + a1x+ ε for xLO ≤ x ≤ xHI)
are monitored using Hotelling’s T 2 chart. Kim et al. (2003) use two independent (univariate) ex-
ponentially weighted moving average (EWMA) charts to monitor the two regression parameters
separately.

Although a linear form occurs frequently, many profile data sets (for example, radar signa-
tures) exhibit non-linearities and other complicated features such as discontinuities, cusps, and
other types of non-smooth, irregular behaviour (Chicken et al. 2009). Woodall et al. (2004) give
an overview of using control charts to monitor both linear and non-linear profile data as an ap-
plication of SPC. Ding et al. (2006) present a strategy for Phase I analysis of non-linear profile
data, where the Phase I data may be contaminated by out-of-control realizations of the profile;
and the objective is to identify and eliminate all out-of-control realizations so that the remain-
ing Phase I data can be used to calibrate the profile-monitoring scheme that will be applied in
Phase II operation. Williams et al. (2007) discuss an application of profile monitoring in the
manufacture of particle board, and they extend Hotelling’s T 2 chart to monitor the coefficients
of a parametric non-linear regression model. Staudhammer et al. (2007) develop profile charts
for monitoring the thickness of a sawn board at selected points along the length of the board as
it leaves a sawing machine in a lumber mill. They also monitor regression parameters to detect
complex sawing defects. However, as Chicken et al. (2009) point out, regression parameters
may not adequately reflect the profile shifts; moreover, fitting a sufficiently accurate parametric
model to a set of observed profiles can present substantial difficulties.

For most non-linear profile-monitoring charts, the power to detect shifts in the mean of a
profile can drop significantly if the monitored profile consists of a large number of components
(that is, if the profile is ‘high-dimensional’) (Fan 1996). Several dimension-reduction techniques
have been proposed and incorporated into multivariate SPC charts for profile monitoring, includ-
ing smoothing by regression (Kang and Albin 2000), functional principal component analysis



International Journal of Production Research 3

(Ramsay and Silverman 2006), and the use of the discrete wavelet transform (DWT) (Jin and
Shi 1999, Lada et al. 2002, Jeong et al. 2006).

Among such dimension-reduction techniques, wavelet-based approaches have gained popu-
larity, especially for monitoring profiles that have highly complex or non-smooth behaviour;
and such methods have been shown to be effective (Ganesan et al. 2004). These profiles are
usually multiscale in nature, exhibiting substantially different critical features at different times
and frequencies; see Ganesan et al. (2004) and Kano et al. (2002). Jin and Shi (1999, 2001) use
wavelets to monitor waveform signals (non-linear profiles) from an automotive steel-stamping
operation. To detect shifts in antenna data, Jeong et al. (2006) apply a Hotelling’s T 2–type chart
to the wavelet coefficients of the observed non-linear profiles. To monitor shifts in the mean
of a non-linear profile whose noise components are randomly sampled from a common normal
distribution, Chicken et al. (2009) track shifts in the mean of the corresponding discrete wavelet
transform (DWT) using a likelihood ratio test to detect the change point. Chicken et al. (2009)
use trial-and-error simulations to estimate the upper control limit for the log-likelihood-ratio test
statistic beyond which an associated series of sampled profiles is declared to be out of control.

Generally, a wavelet-based monitoring approach first uses wavelets to decompose a sampled
profile into scaling and detail coefficients at various levels of resolution; then a noise-elimination
method such as principal component analysis (Jolliffe 1986) or a thresholding method (Donoho
and Johnstone 1994) is used to reduce in magnitude or eliminate (that is, set to zero) all the
estimated wavelet coefficients that are considered to be ‘unimportant’ so that the surviving co-
efficients can be effectively monitored for possible shifts in the mean of the original sampled
profiles. In this article, we exploit the capacity for parsimonious representation via wavelet
coefficients in the formulation of WDFTC, a wavelet-based distribution-free tabular CUSUM
chart for monitoring high-dimensional profiles; and the wavelet-based dimension reduction is
achieved by minimizing the weighted relative reconstruction error (Lada et al. 2002).

Beyond the challenge of coping effectively with the ‘curse of dimensionality’, the assumption
of i.i.d. normal errors is a severe constraint on the development of an effective wavelet-based
control chart for monitoring profiles with deterministic and stochastic properties that may be
irregular in some subregions of time or space. In our experience, we have found that SPC charts
based on the assumption of i.i.d. normal noise components do not perform adequately when
they are applied to processes whose responses (and hence the corresponding errors) exhibit sub-
stantial variance heterogeneity, pronounced non-normality, or significant correlations (Kim et al.
2007, Lee et al. 2009). Little has been done on the development and practical implementation of
a monitoring scheme for high-dimensional profiles with non-normal, correlated responses. Qiu
(2008) proposes a distribution-free multivariate CUSUM chart based on log-linear modelling,
but the method is only applied to test processes with three quality characteristics; and as Qiu
remarks, the performance of the proposed chart is unknown for high-dimensional profiles. Pro-
cedure WDFTC is intended to enable robust, efficient monitoring of high-dimensional profiles
with anomalous distributional properties.

The rest of this article is organized as follows. In Section 2, we introduce the symbols and
terminology used throughout the article. We also present two examples that motivate our devel-
opment of WDFTC by illustrating the degradation in the performance of the profile-monitoring
chart M∗ of Chicken et al. (2009) when the profile responses exhibit substantial non-normality,
variance heterogeneity, or correlation between the responses. We close Section 2 with a brief
discussion of the wavelet transform as a tool for monitoring high-dimensional profiles. In Sec-
tion 3 we present the WDFTC chart, which is specifically designed to monitor a profile whose
components may have any non-singular joint probability density function — in particular, dif-
ferent profile components may have different continuous marginal distributions that may be
non-normal; moreover, the covariance matrix of the profile’s components is merely required to
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be symmetric and positive definite. In Section 4 of this article, we summarize the results of a
comprehensive performance evaluation of WDFTC in comparison with other existing profile-
monitoring schemes. In Section 4, we also summarize the results of applying WDFTC to laser
range sensor data that arise in lumber manufacturing. We conclude the article by recapitulating
the main findings of this work in Section 5.

2. Background

To facilitate our discussion of the development of a distribution-free chart for monitoring high-
dimensional profiles, we consider a vector-valued stochastic process of the form

Y j = f(x)+ε j, j = 1,2, . . . , (1)

where: x = (x1, . . . ,xn)
T is the n× 1 vector consisting of n selected values of the input vari-

able to be used in generating the jth observed profile (note that x is the same for all pro-
files; and throughout this article, we let AT denote the transpose of a vector or matrix A);
Y j = (y1, j, . . . ,yn, j)

T is the n×1 vector consisting of the n respective values of the response vari-
able; f(x) = [ f (x1), . . . , f (xn) ]

T is the n×1 vector consisting of the n respective expected values
of the response variable; and ε j = (ε1, j, . . . ,εn, j)

T is the associated n×1 noise (error) vector with
mean E[ε j] = 0n (the n×1 vector of zeros) and covariance matrix Cov[ε j] = E[ε jε

T
j ] = Σ0. The

relevant univariate functional relationship holds for each point of the jth profile; thus we have
yi, j = f (xi)+εi, j for i = 1, . . . ,n, where εi1, j and εi2, j may be non-normal and correlated for i1 ,
i2. We distinguish two process states: (1) Y j is in control when E[Y j] = f0 = [ f0(x1), . . . , f0(xn) ]

T

for a given in-control function f0(·) relating the input variable to the corresponding mean re-
sponse; and (2) Y j is out of control when E[Y j] = f1 = [ f1(x1), . . . , f1(xn) ]

T , f0 for any other
function f1(·) relating the input variable to the corresponding mean response. Without loss of
generality, throughout the rest of this article we assume the mean in-control profile f0 is centred
so that 1T

n f0 = ∑
n
i=1 f0(xi) = 0, where 1n is the n×1 vector of ones.

Whether it is in control or out of control, the jth observed profile Y j (for j = 1,2, . . .) is
assumed to have the same covariance matrix Cov[Y j] = Σ0. For the ith component Yi, j of the
jth profile (i = 1, . . . ,n), we let σ2

i =
[
Σ0
]

i,i denote the component’s marginal variance. Suppose
that the profile length n has the form n = 2J for some positive integer J and that W denotes
the corresponding DWT matrix defined by a given wavelet system with the coarsest level of
resolution L ∈ {0, . . . ,J− 1} as elaborated in Section 2.2. Then d j = WY j = (d1, j, . . . ,dn, j)

T

is the DWT of the jth profile, while θ0 = W f0 = (θ1,0, . . . ,θn,0)
T is the DWT of the mean in-

control profile f0 (Ogden 1997, Mallat 2009). For the leading components of θ0 (or d j), we have
2L scaling coefficients (or estimated scaling coefficients), representing the coarser features of the
associated profile — i.e., the profile features that are prominent at the lower levels of resolution.
Moreover for the remaining components of θ0 (or d j), we have n− 2L detail coefficients (or
estimated detail coefficients) representing the finer features of the associated profile — i.e., the
profile features that are revealed only at the higher levels of resolution. The covariance matrix
of d j is given by Cov[d j] = Λ0 = WΣ0WT.

Throughout the article, we compare and analyse different profile-monitoring charts based on
the in-control average run length (ARL0) and the out-of-control average run length (ARL1)
expressed in terms of the number of individual profiles {Y j : j = 1,2, . . .} that are observed
before raising a false alarm (under the in-control condition) or a true alarm (under a specific
out-of-control condition).
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2.1. Motivating examples

In this subsection, we demonstrate the need for a distribution-free SPC chart that effectively
monitors high-dimensional profiles exhibiting variance heterogeneity, non-normality, or stochas-
tic dependencies among profile components. In particular, we examine the performance of the
wavelet-based profile-monitoring chart M∗ of Chicken et al. (2009), which is designed to mon-
itor non-linear profiles described by equation (1), where for j = 1,2, . . . , the jth error vector
ε j = (ε1, j, . . . ,εn, j)

T is assumed to consist of i.i.d. N(0,σ2
∗ ) components; that is, the noise terms

{εi, j : i = 1, . . . ,n} are assumed to be independent normal random variables with mean 0 and
standard deviation σ∗. Therefore each observed profile has the covariance matrix Σ0 = σ2

∗ In,
where In denotes the n×n identity matrix.

We consider two motivating examples in which the above assumptions on the error vectors
{ε j} are violated. In the first motivating example (ME1), we explore the effect on the perfor-
mance of the chart M∗ arising from correlated normal noise components with heterogeneous
variances as detailed below.

• The autocorrelation function for the noise components of each profile in ME1 is taken from
von Sachs and MacGibbon (2000, p. 484) — namely, the damped sinusoidal form

ρ(`) = Corr[yi, j,yi+`, j ] = (−α2)
|`/2|

[
sin(|`|ω +ξ )

sin(ξ )

]
for `= 0,±1, . . . ,±(n−1), (2)

where we take α1 = 4/3, α2 = −8/9, the angular frequency ω = cos−1
[

α1/2
√
−α2

]
�

0.785, and the phase constant ξ = tan−1[tan(ω)(1−α2)/(1+α2)] � 1.51. This gives, for
example, ρ(1) = 0.71 and ρ(2) = 0.052.

• The marginal variances for the components of each profile in ME1 are similar to those used
in Example 2 of Gao (1997),

σ
2
i = Var[yi, j] = σ

2
0

(
1+
{

0.5−2.5
[
(i−1)/n−0.515

]2}2
)2

(3)

for i = 1, . . . ,n, where σ2
0 = 9.50. The resulting marginal variances σ2

i (for i = 1, . . . ,n) take
values between 9.5 and 14.8; and the componentwise correlations take values between −0.71
and 0.71.

The covariances between pairs of profile components in ME1 are then given by Cov[yi1, j, yi2, j ]
=
[
Σ0
]

i1,i2
= σi1σi2ρ(i1− i2) for i1, i2 = 1, . . . ,n.

In the second motivating example (ME2), we explore the effect on the performance of the chart
M∗ arising from non-normal marginal distributions for the components of the profiles that are
randomly sampled during Phase II operation. By contrast with ME1, test process ME2 has noise
components that are mutually independent shifted exponential random variables with mean 0
and variance 1 for j = 1,2, . . . and i = 1, . . . ,n.

In both test processes ME1 and ME2, we add out-of-control shifts and noise terms to the
mean in-control profile f0 defined by n = 512 equally spaced points on the piecewise smooth
function of Mallat (2009, p. 458) as depicted in Figure 1; and we monitor the observed profiles
{Y j : j = 1,2, . . .} in Phase II operation using procedure M∗.

When monitoring non-normal profiles, we consider two different simulation-based methods
to calibrate (estimate) the control limits for an SPC chart that was originally developed under the
assumption of normally distributed profile components, possibly with non-zero componentwise
correlations.
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Figure 1. Mallat’s piecewise smooth function.

Calibration Method CMA: Generate a preliminary (Phase I) data set consisting of normally
distributed profiles that have the same in-control mean vector and the same covariance matrix
as the non-normal profiles to be monitored. Obtain the required control limit(s) for the normally
distributed profiles via trial-and-error simulations designed to yield the prespecified target value
of ARL0. Use the resulting control limit(s) to monitor the non-normal profiles in regular Phase
II operation.

Calibration Method CMB: Obtain the required control limit(s) via trial-and-error simulations
using the same type of in-control, non-normal profiles that are to be monitored in Phase II; then
use the resulting control limit(s) to detect out-of-control conditions in Phase II operation.

Exploiting the CMA-based control limit(s), we can illustrate the risk of monitoring non-normal
profiles with existing SPC charts that were originally designed for normal profiles. A simi-
lar approach is taken by Qiu (2008), wherein he demonstrates how excessively large rates of
occurrence for false alarms (or equivalently, values for ARL0 that are substantially below the
user-specified nominal level) can occur when SPC charts based on the normality assumption are
applied to non-normal profiles. On the other hand, CMB enables us to compare the performance
of different SPC charts in terms of the resulting values of ARL1 (or equivalently, the rates of
occurrence of true alarms) for a specific out-of-control condition, because each chart’s control
limits have been calibrated to yield the target value of ARL0 when the monitored non-normal
profiles are in control.

The profile-monitoring chart M∗ was applied as follows:
Chart M∗: Calculate θ0 = W f0. Let j0 denote the unknown change point (profile index) after

which out-of-control profiles occur in Phase II operation, where j0 ≥ 0. Calculate d j = WY j
for j = 1, . . . ,G, where G is assumed to be large enough so that G ≥ j0. For j = 1, . . . ,G,
calculate the basic statistic w j = (n/σ2

∗ )∑
n
i=1(di, j− θi,0)

2 measuring the standardized discrep-
ancy between d j and θ0 as well as its ‘thresholded’ version w̃ j = (n/σ2

∗ )∑
n
i=1[thr(di, j−θi,0)]

2,
where the VisuShrink thresholding operator thr(·) of Donoho and Johnstone (1994) is applied
to each component of the difference d j − θ0. Given a candidate value u ∈ {0,1, . . . ,G− 1}
for the unknown change point j0, calculate the associated likelihood-ratio parameter estima-
tor γ̂ = (G−u)−1

(
∑

G
j=u+1 w̃ j

)
−u−1

(
∑

u
j=1 w̃ j

)
for u , 0 and γ̂ = G−1

∑
G
j=1 w̃ j for u = 0; and

finally evaluate the log-likelihood-ratio statistic h(u) = (γ̂/2)∑
G
j=u+1[(w j/n)− 1] so as to find
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ĵ0 = argmax
{

h(u) : u = 0,1, . . . ,G−1
}

, the estimated change point. For an upper control limit
(UCL) obtained via trial-and-error simulations designed to yield the target value ARL0 = 200,
raise an out-of-control alarm at time (profile) index G if h( ĵ0)> UCL.

Following the approach of Chicken et al. (2009), we express the overall size of a shift f1− f0
in the mean profile in terms of the squared Euclidean distance between f0 and f1,

a = ‖ f1− f0‖2
2 =

n

∑
i=1

[ f1(xi)− f0(xi) ]
2 .

Recall that n = 512; and in Phase II operation of M∗, we add uniform local shifts to
f0 for the component indices i ∈ {89,90, . . . ,96} (i.e., 8 shifted components) and for i ∈
{241,242, . . . ,256} (i.e., 16 shifted components) so as to yield a selected value of the overall
shift size

√
a. This local shift was also used by Jeong et al. (2006) and Chicken et al. (2009).

Table 1 contains the estimated ARLs and the associated standard errors delivered by M∗ based
on 1,000 independent replications of the test process ME1 when a uniform local shift of overall
size
√

a was added to the in-control mean profile f0 to yield f1, with the same values of
√

a used
by Chicken et al. (2009). To apply M∗, we estimated σ∗ using the average of the median absolute
deviations of the n/2 highest-level detail coefficients from each observed profile as proposed by
Chicken et al. (2009). Note that in test problem ME1, the calibration methods CMA and CMB
coincide. Comparing the values of ARL1 in Table 1 with the corresponding values of ARL1 in
Table 1 of Chicken et al. (2009), we concluded that the performance of M∗ was unacceptable
for all the specified out-of-control conditions.

Table 1. ARLs delivered by M∗ for test pro-
cess ME1.
Shift Type

√
a Est. ARL Std. Err.

In-Control 0 199. 0.83
Local Shift 0.1 198. 0.71

0.2 198. 0.71
0.3 196. 0.71
0.4 194. 0.69
0.5 189. 0.68

Table 2 contains the estimated ARLs and the associated standard errors delivered by M∗ based
on 1,000 independent replications of the non-normal test process ME2 when a uniform local shift
of overall size

√
a was added to the in-control mean profile f0 to yield f1. The performance of

M∗ was evaluated using both calibration methods CMA and CMB. The control limit obtained
from CMA resulted in an extremely small value of ARL0 for M∗, which translated into an un-
acceptably large rate of occurrence of false alarms; and in this highly irregular situation, we
omitted applying M∗ to ME2 with the specified out-of-control conditions. Comparing the values
of ARL1 in Table 2 with the corresponding values of ARL1 in Table 1 of Chicken et al. (2009),
we concluded that when procedure M∗ was calibrated using method CMB, the performance of
M∗ was unacceptable for all the specified out-of-control conditions.

It was clear from the results for both test processes ME1 and ME2 that the performance of
M∗ became problematic in the presence of stochastic dependence, heterogeneous variances, and
non-normality of the sampled profiles. Such characteristics are common in high-dimensional
profile data, but most existing profile-monitoring charts, including M∗, require the monitored
profile to have i.i.d. normal noise components for successful application of the chart. This con-
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Table 2. ARLs delivered by M∗ for test process ME2.

Calibration Method
Shift Type

√
a CMA CMB

Est. ARL Std. Err. Est. ARL Std. Err.
In-Control 0 3.32 0.09 200. 0.81
Local Shift 0.1 – – 191. 0.98

0.2 – – 165. 0.86
0.3 – – 110. 0.62
0.4 – – 59. 0.37
0.5 – – 30. 0.20

clusion will be placed into a more complete perspective in Section 4 of this article, where we
summarize the results of a comprehensive experimental performance evaluation of WDFTC ver-
sus M∗ and some other commonly used profile-monitoring schemes.

2.2. Wavelet transform overview

In this subsection, we briefly review the wavelet transform. Let L 2[0,1] denote the space of
real-valued square-integrable functions defined on the unit interval [0,1]. The wavelet transform
of a function g ∈L 2[0,1] is used to obtain a representation of g as an infinite series involving
orthonormal basis functions. A scaling function φ ∈L 2[0,1] has several key properties that give
rise to the associated wavelet function ψ ∈L 2[0,1]; and from ψ , we can derive an orthonormal
set of basis functions for L 2[0,1] analogous to the trigonometric functions used in the Fourier
series representation. For simplicity in the following discussion, we assume that φ and ψ are the
Haar scaling and wavelet functions, respectively; see Ogden (1997, pp. 7–23) or Mallat (2009,
p. 291).

For a function g ∈L 2[0,1], the representation of g in terms of the Haar scaling and wavelet
functions is given by

g(z) = lim
B→∞

B−1

∑
`=−∞

d2`e−1

∑
m=0
〈g,ψ`,m〉ψ`,m(z) = lim

B→∞

2B−1

∑
m=0
〈g,φB,m〉φB,m(z) (4)

for almost all z∈ [0,1], where: h`,m(z)= 2`/2h(2`z−m) for h=ψ,φ ; and for g1,g2 ∈L 2[0,1] we
let 〈g1,g2〉 =

∫ 1
0 g1(z)g2(z)dz denote the inner product operator (Ogden 1997). The Bth partial

sum PB(g) on the far right-hand side of equation (4) can be viewed as an approximation to g
that becomes progressively more accurate as B increases. In equation (4), the quantities {C`,m =
〈g,φ`,m〉} are called the scaling coefficients of g and the quantities {D`,m = 〈g,ψ`,m〉} are called
the detail coefficients of g. In practice, a physical measuring device can only measure a signal
(function) g to a finite level of resolution; thus we take g≈PJ(g) for some finest (highest) level of
resolution J; furthermore, the successive function-approximation operations must stop at some
coarsest (lowest) level of resolution L, where L < J. As a result, one obtains an approximate
representation of g based on its DWT,

g(z)≈
2J−1

∑
m=0

CJ,mφJ,m(z) =
2L−1

∑
m=0

CL,mφL,m(z)+
J−1

∑
`=L

2`−1

∑
m=0

D`,mψ`,m(z) (5)
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for almost all z ∈ [0,1], where: (1) the scaling functions {φL,m(z)} represent the low-frequency
components of g(z) — that is, the smooth parts of g(z); and (2) the wavelet functions {ψ`,m(z)}
represent the high-frequency components of g(z) — that is, the local behaviour of g(z).

To monitor deviations from an in-control profile defined by the function f0(x) for x∈ [xLO,xHI],
we exploit the wavelet transform by taking g(z) = f0[xLO+z(xHI−xLO)] for z∈ [0,1] in equations
(4) and (5). Because the in-control function f0(x) = g[(x− xLO)/(xHI− xLO)] for x ∈ [xLO,xHI]
as approximated via equation (5) is originally represented using n = 2J scaling coefficients
{CJ,m : m = 0,1, . . . ,2J−1} of f0(·) at the finest level of resolution, we see that f0(·) can also be
represented using the 2L coarsest-level scaling coefficients {CL,m : m = 0,1, . . . ,2L−1} of f0(·)
together with the n−2L detail coefficients {D`,m : `= L,L+1, . . . ,J−1;m = 0,1, . . . ,2`−1} of
f0(·). Therefore monitoring deviations from an n× 1 in-control mean profile vector f0 defined
by the function f0(·) is equivalent to monitoring deviations from the n× 1 vector consisting of
the 2L coarsest-level scaling coefficients and the n−2L detail coefficients that together constitute
the DWT of f0(·) for the Haar wavelet system with a given value of L. Let W denote the n×n
orthogonal matrix associated with the DWT of n×1 vectors based on the Haar wavelet system
with coarsest level of resolution L. Given a randomly sampled n× 1 in-control profile Y j, the
linear transformation d j = WY j yields estimates of the scaling and detail coefficients of f0(·),
where if necessary the rows of W have been suitably interchanged to ensure that the first 2L

components of d j are the estimated scaling coefficients of f0(·), and the last n−2L components
of d j are the estimated detail coefficients of f0(·).

Because of its simplicity, the Haar wavelet is frequently used in existing wavelet-based SPC
schemes (Ganesan et al. 2004, Jeong et al. 2006), especially when the in-control function f0(·)
is piecewise constant. For smoother functions, other wavelet systems such as the Daubechies or
symmlet wavelets are often used (Lada et al. 2002, Ganesan et al. 2004). In this article we use
the symmlet wavelet with the number of vanishing moments equal to eight because the symmlet
8 wavelet yields a smoother approximation to f0(·) than the Haar wavelet does.

3. Procedure WDFTC: A wavelet-based distribution-free tabular
CUSUM chart for profile monitoring

Procedure WDFTC combines the DWT with the distribution-free tabular CUSUM chart of Kim
et al. (2007) and Lee et al. (2009) and focuses on monitoring key components of the DWT
determined by a wavelet-based dimension-reduction technique that will be explained in Section
3.1. Table 3 provides a list of all key notation needed in the formulation of WDFTC.

WDFTC begins by computing the wavelet coefficient vector θ0 =W f0 for the in-control mean
profile f0. As described in the next subsection, we seek an ‘optimal’ set of p wavelet coefficients
selected from the components of θ0 to constitute the respective non-zero components of the n×1
vector θ#

0 so that the following conditions hold: (1) we take 2L ≤ p ≤ n, selecting all 2L scal-
ing coefficients and the p− 2L largest-magnitude detail coefficients of θ0 to form the non-zero
components of θ#

0 ; and (2) as an approximation to f0, the inverse transform W−1θ#
0 minimizes

the weighted relative reconstruction error (WRRE) evaluated over all p ∈ {2L, . . . ,n}. Let ϑ#
0

denote the p× 1 reduced-dimension version of θ# in which all the non-selected (zero-valued)
components have been deleted; and let d#

j denote the corresponding p× 1 reduced-dimension
version of the DWT of the jth profile Y j for j = 1,2, . . . . Let Λ#

0 denote the p× p covariance
matrix of d#

j , and let Λ̃#
0 denote the regularised (thresholded) estimator of Λ#

0 computed from the
Phase I data. WDFTC computes the batch-means vectors d#

k (r) = r−1
∑

r
u=1 d#

(k−1)r+u based on
non-overlapping batches of size r observed in Phase I for k = 1, . . . ,bN/rc .

Within the kth batch of r profiles observed in Phase I of Procedure WDFTC, all the
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Table 3. Notation summary.

f0 = the n×1 in-control mean profile, which is assumed to satisfy the centring condition 1T
n f0 =

0;

θ0 = W f0, the n×1 DWT of the in-control mean profile f0, where the first 2L components of θ0

are the scaling coefficients and the last n−2L components of θ0 are the detail coefficients;

θ#
0 = the n×1 version of θ0 in which p elements are selected for retention and n− p elements are

set to zero and so as to minimize the weighted relative reconstruction error that is defined
by equation (7) and that is incurred by using W−1θ#

0 as an approximation to f0;

ϑ#
0 = the p×1 version of θ#

0 in which the n− p non-selected elements of θ#
0 have been deleted;

f #
0 = W−1θ#

0 , the approximate in-control mean profile reconstructed from θ#
0 ;

Y j = the jth n×1 observed profile for j = 1, . . . ,N in Phase I and for j = 1,2, . . . in Phase II;

Yk(r) = r−1
∑

r
u=1 Y(k−1)r+u, the kth n×1 batch-means vector based on non-overlapping batches of

size r for k = 1, . . . ,bN/rc in Phase I and for k = 1,2, . . . in Phase II;

d j = WY j, the n×1 DWT of the jth observed profile Y j;

dk(r) = r−1
∑

r
u=1 d(k−1)r+u, the kth n×1 batch-means DWT vector computed from non-overlapping

batches of size r;

d#
j = the p×1 reduced-dimension version of d j in which the n− p elements of d j corresponding

to the non-selected (zero-valued) elements of θ#
0 have been deleted to yield d#

j ;

d#
k (r) = r−1

∑
r
u=1 d#

(k−1)r+u, the kth p× 1 batch-means vector of reduced-dimension DWTs based
on non-overlapping batches of size r;

Λ0 = E[ (d j−E[d j])(d j−E[d j])
T ], the n× n covariance matrix of d j, assumed to be the same

for both in-control and out-of-control conditions;

Λ0(r) = Λ0/r, the n×n covariance matrix of dk(r);

Λ#
0 = E[ (d#

j −E[d#
j ])(d#

j −E[d#
j ])

T ], the p× p covariance matrix of the reduced-dimension DWT
d#

j ;

Λ#
0(r) = Λ#

0/r, the p× p covariance matrix of the reduced-dimension batch-means DWT d#
k (r);

d#
N = N−1

∑
N
j=1 d#

j , the p×1 sample mean of the reduced-dimension DWTs {d#
j : j = 1, . . . ,N}

computed from the profiles observed in Phase I;

Λ̂#
0 = (N−1)−1

∑
N
j=1 (d#

j − d#
N)(d#

j − d#
N)

T, the p× p sample covariance matrix of the reduced-
dimension DWTs {d#

j : j = 1, . . .N} computed from the profiles observed in Phase I;

Λ̃#
0 = version of Λ̂#

0 that has been regularised (thresholded) according to Algorithm CMR below;

Λ̃#
0(r) = Λ̃#

0/r, the p× p estimated covariance matrix of the reduced-dimension DWTs {d#
k (r) : k =

1, . . . ,bN/rc} based on the regularised sample covariance matrix Λ̃#
0 .

sample information about in-control deviations from θ0 is combined in Hotelling’s statistic
T 2

k (r) =
[
d#

k (r)−ϑ#
0
]T[
Λ̃#

0/r
]−1[d#

k (r)−ϑ#
0
]

for k = 1, . . . ,bN/rc. Procedure WDFTC deter-
mines its control limit analytically for a given target value of ARL0 using an approach adapted
from Kim et al. (2007) based on the sample mean and variance of the statistics {T 2

k (r) : k =
1, . . . ,bN/rc} observed in Phase I. Then in Phase II (regular) operation, the CUSUM proce-
dure of Lee et al. (2009) is applied to the associated statistics {T 2

k (r) : k = 1,2, . . .} to detect
out-of-control conditions. A formal algorithmic statement of WDFTC is given in Figure 2.
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Procedure WDFTC
Phase I — Using the in-control mean profile f0 and the randomly sampled in-control profiles
{Y j : j = 1, . . . ,N}, perform the following steps:

[1] Choose the optimal set of p non-zero components for the n× 1 vector θ#
0 by selecting from

the associated components of θ0 so as to minimize the weighted relative reconstruction error
that is defined by equation (7) and that is incurred by using W−1θ#

0 to approximate f0, where
2L ≤ p ≤ n. Assign ϑ#

0 as the p× 1 version of θ#
0 from which all non-selected (zero-valued)

components have been deleted.
[2] Apply the covariance-matrix regularisation scheme of Algorithm CMR (Figure 3 in Section

3.2) to the sample covariance matrix Λ̂#
0 of the reduced-dimension DWTs {d#

j : j = 1, . . . ,N},
thereby obtaining the regularised sample covariance matrix Λ̃#

0 ; then let Λ̃#
0(r) = Λ̃

#
0/r.

[3] Compute the batch size r using Algorithm BSD (Figure 4 in Section 3.3).
[3a] For k = 1,2, . . . ,bN/rc, compute the kth batch-means vector Yk(r) = r−1

∑
r
u=1 Y(k−1)r+u,

the associated batch-means DWT dk(r) =WYk(r), and the reduced-dimension batch-means
DWT d#

k (r) to obtain the Hotelling’s statistic

T 2
k (r) = [d#

k (r)−ϑ#
0 ]

T[Λ̃#
0(r)]

−1[d#
k (r)−ϑ#

0 ] . (6)

[3b] From the Phase I statistics {T 2
k (r) : k = 1, . . . ,bN/rc}, compute the usual sample mean

µ̂T 2(r) and the sample variance σ̂2
T 2(r)

.
[4] Calculate the root H of the equation

σ̂2
T 2(r)

2K2

exp

2K[H +1.166σ̂T 2(r)]

σ̂2
T 2(r)

−1−

2K[H +1.166σ̂T 2(r)]

σ̂2
T 2(r)


= 2ARL0,

where K = 0.1σ̂T 2(r).

Phase II — For k = 1,2, . . . , compute the kth batch-means vector Yk(r) from the latest non-
overlapping batch of r profiles {Y j : j = (k− 1)r+ 1, . . . ,kr} observed in Phase II, and perform
the following steps:

[5] Compute dk(r) and its reduced-dimension counterpart d#
k (r) to obtain the associated

Hotelling’s statistic T 2
k (r) as in equation (6).

[6] Raise an alarm after observing the kth batch-means vector Yk(r) if S+(k) ≥ H or S−(k) ≥ H,
where

S±(k) =

0, if k = 0,

max
{

0, S±(k−1)± [T 2
k (r)− µ̂T 2(r) ]−K

}
, if k = 1,2, . . . .

Figure 2. Algorithmic description of WDFTC.

3.1. Dimension reduction

In this subsection, we discuss WDFTC’s dimension-reduction technique. Jin and Shi (1999) use
a universal thresholding scheme for wavelet shrinkage, but such a scheme assumes uncorrelated
normal components and thus does not always work for non-normal components. Instead, we
propose an extension of the method of Lada et al. (2002) that exploits the concept of weighted
relative reconstruction error. We seek to select a (relatively) small number p of the components
of θ0 = (θ1,0, . . . ,θn,0)

T = W f0, including all 2L scaling coefficients and the p− 2L largest-
magnitude detail coefficients (provided p > 2L); and the modified vector θ#

0 = (θ #
1,0, . . . ,θ

#
n,0)

T
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is obtained from θ0 by setting to zero the n− p non-selected components of θ0 so that the recon-
structed vector f #

0 = W−1θ#
0 is a sufficiently accurate approximation to f0. In the following dis-

cussion, we will write θ#
0 and f #

0 as θ#
0(p) and f #

0 (p), respectively, to emphasize the dependence
of these vectors on p. When we use f #

0 (p) as an approximation to f0, the relative reconstruction
error is ‖ f #

0 (p)− f0‖2
/
‖ f0‖2 (Lada et al. 2002); and the corresponding data-compression ratio is

p/n. For a given value of p ∈ {2L, . . . ,n} and weight q ∈ [0,1] assigned to the data-compression
ratio, we define the weighted relative reconstruction error (WRRE) as follows:

WRRE(p; f0,q) = (1−q)
[
‖W−1θ#

0(p)− f0‖2

‖ f0‖2

]
+q
( p

n

)
= (1−q)

[
‖ f #

0 (p)− f0‖2

‖ f0‖2

]
+q
( p

n

)
; (7)

and we choose p (and implicitly, θ#
0(p)) to minimize WRRE(p; f0,q),

p = argmin
u = 2L, . . . ,n

WRRE(u; f0,q) . (8)

Remark 3.1 : There is a potential problem in using the dimension-reduction scheme of equa-
tions (7) and (8) if 1T

n f0 , 0 and all the components of f0 have large magnitudes. In this situation,
the relative reconstruction error can be negligibly small in comparison with the data-compression
ratio for all feasible values of p so that equation (8) yields p = 2L; and then the only non-zero
components of θ#

0(p) are the scaling coefficients in θ0, which can yield a low-resolution approx-
imation to f0. The centring condition 1T

n f0 = 0 avoids this problem.

In the formulation of WRRE(p; f0,q) given by equation (7), the weight q can be adjusted to
achieve an effective trade-off between the relative reconstruction error and the data-compression
ratio. In many applications of profile monitoring, the reduced dimension p must be sufficiently
small to ensure that the Hotelling’s statistics {T 2

k (r) : k = 1,2, . . .} computed in Phase II have
adequate power to detect shifts in the mean profile. On the other hand, p must be sufficiently
large so that the selected scaling and detail coefficients in the DWT of an out-of-control profile
can accurately represent deviations from the in-control mean profile. Setting the weight q = 0.5
yields the same value of p as for the method of Lada et al. (2002). For profiles of moderate
dimension (that is, n ≤ 1,000), we found that q = 0.5 generally yielded satisfactory results. On
the other hand, for profiles of dimension n > 1,000, we found that q > 0.5 was required to obtain
acceptable results. In this article, we use q = 0.7 to handle profiles of dimension n = 2,048.

The effectiveness of the dimension-reduction scheme in WDFTC also depends on the coarsest
level of resolution, L, based on the application at hand. For the choice of L to be used with
WDFTC, we adapt the approach of Lada and Wilson (2006) and use the default value L = dJ/2e,
where J = log2(n). In some cases we also use slightly smaller values of L than the default value
(for example, dJ/2e−1 or dJ/2e−2), but only if such values of L yield a meaningful dimension
reduction compared with that of the default value.

In some applications, the mean in-control profile f0 and its DWT θ0 may not be known exactly.
To estimate f0 in such cases, we use the centred sample mean

f̂0 =
(
In−n−11n1T

n
)(

N−1
N

∑
j=1

Y j

)
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of the profiles observed in Phase I. Moreover from the DWT θ̂0 = W f̂0, we obtain the asso-
ciated estimators θ̂#

0(p) and f̂ #
0 (p) = W−1θ̂#

0(p) to be used in equations (7) and (8) of the
dimension-reduction scheme as well as the estimator ϑ̂#

0 to be used in computing Hotelling’s
statistic T 2

k (r) =
[
d#

k (r)− ϑ̂#
0
]T[
Λ̃#

0(r)
]−1[d#

k (r)− ϑ̂#
0
]

for k = 1,2, . . . in both Phases I and II of
WDFTC.

3.2. Covariance-matrix regularisation

In this section, we explain the covariance-matrix regularisation step [2] of WDFTC that is ap-
plied to the sample covariance matrix Λ̂#

0 =(N−1)−1
∑

N
j=1
(

d#
j −d#

N
)(

d#
j −d#

N
)T of the reduced-

dimension DWTs {d#
j : j = 1, . . . ,N} computed from the profiles observed in Phase I, where

d#
N = N−1

∑
N
j=1 d#

j . Commenting on the wavelet-based method of Jin and Shi (2001) for diagno-
sis of process faults, Woodall et al. (2004) state that the use of Hotelling’s T 2 statistic may not
be efficient because high correlations between the components of each profile Y j may lead to
over-parameterisation — that is, an excessive value for the dimension p of the {d#

j }. Moreover
if p > 200, then estimating the p× p covariance matrix Λ#

0 can also be difficult, especially if
there is a limited amount of Phase I (training) data (see, for example, Hoffbeck and Landgrebe
(1996), Daniels and Kass (2001), and Ledoit and Wolf (2002)). In particular if the size N of the
Phase I data set is insufficient or the joint distribution of each in-control random vector d#

j is
singular, then Λ̂#

0 is not guaranteed to be positive definite so that the associated Hotelling’s T 2

statistic is not guaranteed to exist.
In this article we make the following (mild) assumptions: (1) the n× 1 profile vector Y j has

a non-singular joint probability density function that depends on the current in-control or out-
of-control condition; and (2) the covariance matrix Cov[Y j] is the same for both in-control and
out-of-control conditions. Under assumptions (1) and (2), different profile components may have
different continuous marginal distributions that may be non-normal. In this broadly applicable
setting if N ≥ p+1, then Λ̂#

0 is positive definite with probability one (see, for example, Propo-
sition 2 of Porta Nova and Wilson (1989)).

To avoid problems with Hotelling’s T 2 statistic in situations for which p > 200, we adapt the
covariance-regularisation method of Bickel and Levina (2008) and use Λ̃#

0 , the resulting thresh-
olded version of Λ̂#

0 in WDFTC. Although the main asymptotic results of Bickel and Levina
(2008) are based on the assumption that the profiles {Y j} are randomly sampled from a Gaus-
sian (normal) or sub-Gaussian distribution, we have found the authors’ approach to be useful in
formulating a covariance-matrix regularisation procedure for WDFTC that is reasonably robust
against violations of the normality assumption. As we shall see in Section 3.3, the batch-size
determination Algorithm BSD is also designed to avoid large departures from normality in the
basic random vectors from which the relevant Hotelling’s T 2 statistic is computed.

In the context of profile monitoring with WDFTC, the basic idea of the covariance-matrix
regularisation method of Bickel and Levina (2008) is that if p and N are sufficiently large and
log(p)/N is sufficiently small, then the p× p sample covariance matrix Λ̂#

0 can be (hard) thresh-
olded at a positive level τ depending on N and p such that with high probability, the thresh-
olded covariance matrix Λ̃#

0 is positive definite and close to the theoretical covariance matrix
Λ#

0 = E
[(

d#
j −E[d#

j ]
)(

d#
j −E[d#

j ]
)T ] in a certain sense. We adapt the thresholding scheme of

Bickel and Levina (2008) to WDFTC so that when it is applied to Λ̂#
0 , the following elements

remain intact (i.e., are not subject to the thresholding operation): (1) the 2L × 2L submatrix
of sample covariances of the estimated scaling coefficients (i.e.,

[
Λ̂#

0
]

u,v for u,v = 1, . . . ,2L);
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and (2) the diagonal elements (i.e.,
[
Λ̂#

0
]

u,u for u = 1, . . . , p). With the threshold τ , WDFTC’s

covariance-regularisation scheme maps Λ̂#
0 into the matrix R

(
Λ̂#

0 ;L,τ
)

whose (u,v) element is

[
R
(
Λ̂#

0 ;L,τ
)]

u,v =


[
Λ̂#

0
]

u,v , if (u≤ 2L and v≤ 2L ) or (u = v)[
Λ̂#

0
]

u,vI
(∣∣[ Λ̂#

0
]

u,v

∣∣≥ τ
)
, otherwise,

(9)

where I(·) is the indicator function. Algorithm CMR in Figure 3 determines the estimated thresh-
old τ̂ and the ‘regularised’ version Λ̃#

0 of the sample covariance matrix Λ̂#
0 based on that thresh-

old.

Algorithm CMR
[1] Divide the Phase I data set into two disjoint subsets of size N1 = b0.4Nc and N2 = N−N1,

respectively.
[2] For `= 1,2, calculate the sample covariance matrix Λ̂#

0(`,N`) from the Phase I data subset of
size N`.

[3] Compute the estimated threshold,

τ̂ = argmin

τ ≥ 0

∑
(u,v) and

(2L<u or 2L<v)

{
[ Λ̂#

0(1,N1) ]u,vI[ |[ Λ̂
#
0(1,N1) ]u,v| ≥ τ ]− [ Λ̂#

0(2,N2) ]u,v

}2
.

[4] Calculate the sample covariance matrix Λ̂#
0 using the entire Phase I data set of size N and apply

the covariance-regularisation map of equation (9) to Λ̂#
0 using the threshold τ̂:

Λ̃#
0 = R( Λ̂#

0 ;L, τ̂ ).

Figure 3. Algorithmic description of CMR.

Remark 3.2 : The estimated threshold τ̂ can also be interpreted as the minimal magnitude for
the sample covariances in Λ̂#

0 to be considered ‘significant’; and this interpretation will play
an important role in Algorithm BSD for determining the batch size r as detailed in the next
subsection.

Remark 3.3 : After a suitable batch size r is obtained from Algorithm BSD, we use Λ̃#
0(r) =

Λ̃#
0/r as our estimator of the covariance matrix of the reduced-dimension batch-means DWTs
{d#

k (r) : k = 1, . . . ,bN/rc} computed in Phase I; and then in both Phases I and II of WDFTC, we
use Λ̃#

0(r) to calculate the Hotelling’s statistic T 2
k (r) =

[
d#

k (r)− ϑ̂#
0
]T [
Λ̃#

0(r)
]−1 [d#

k (r)− ϑ̂#
0
]

for k = 1,2, . . . .

3.3. Batch size determination

In this subsection, we explain the method used in WDFTC to determine the batch size r. In our
experience, we have found that excessive covariances between the components of the dimension-
reduced DWTs {d#

j } can seriously distort the performance of a profile-monitoring chart based on
a Hotelling’s T 2–type statistic computed from the {d#

j } obtained in Phase I of the chart’s opera-
tion. In this situation we have obtained substantial improvements in the performance of WDFTC
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by reducing the magnitudes of the covariances between pairs of components of the dimension-
reduced DWTs to manageable levels. The desired covariance reductions are achieved indirectly
by aggregating the observed profiles {Y j : j = 1,2, . . .} into non-overlapping batches of size r so
that the associated non-overlapping batch means

{
Yk(r) = r−1

∑
r
u=1 Y(k−1)r+u : k = 1,2, . . .

}
yield batch-means DWT vectors

{
dk(r) = WYk(r) : k = 1,2, . . .

}
for which Cov[dk(r)] =

Cov[d j]/r =Λ0/r and Cov[d#
k (r)] = Cov[d#

j ]/r =Λ#
0/r, where r is taken to be just large enough

to achieve effective covariance reductions. The formal statement of Algorithm BSD is given in
Figure 4.

Algorithm BSD
[1] Apply Algorithm CMR to obtain τ̂ , the estimated threshold, and Λ̃#

0 , the regularised (thresholded)
version of Λ̂#

0 .
[2] Let Q denote the number of non-zero off-diagonal elements of Λ̃#

0 , excluding the estimated co-
variances between pairs of scaling coefficients,

Q = ∑
(u,v) and

(2L<u or 2L<v)

I( [ Λ̃#
0 ]u,v , 0) .

[2a] If Q = 0, then return r← 1 and stop; otherwise, go to step [2b].
[2b] Calculate the average magnitude ζ of the non-zero off-diagonal elements of Λ̃#

0 , excluding the
estimated covariances between pairs of scaling coefficients,

ζ =
1
Q ∑

(u,v) and
(2L<u or 2L<v)

|[ Λ̃#
0 ]u,v| .

[3] Set the batch size r← d
√

2ζ/τ̂ e and stop.

Figure 4. Algorithmic description of BSD.

The basic idea of Algorithm BSD is first to compute the average magnitude of the elements of
the regularised sample covariance matrix Λ̃#

0 as delivered by Algorithm CMR, where the average
is taken only over the elements that were subjected to the thresholding operation and survived
in Algorithm CMR; then the ratio of this average to the estimated threshold τ̂ is an estimate of
the batch size r necessary to reduce the magnitudes of all relevant covariances between pairs of
components of the reduced-dimension batch-means vector d#

j (r) to ‘non-significant’ levels.

Remark 3.4 : Algorithm BSD is designed to yield a batch size r sufficiently large so that all
the off-diagonal elements of the regularised sample covariance matrix Λ̃#

0(r) = Λ̃
#
0/r have suffi-

ciently small magnitudes to avoid aberrant behaviour of the profile-monitoring statistic T 2
k (r). In

particular, the inflation factor
√

2 in step [3] of Algorithm BSD yields a batch size r > 1 for most
processes, provided that Algorithm CMR delivers at least one non-zero off-diagonal element in
the regularised sample covariance matrix Λ̃#

0 , excluding the estimated covariances between pairs
of scaling coefficients.

Remark 3.5 : When the true covariance matrixΛ#
0(r) is used to calculate the profile-monitoring

statistic T 2
k (r), then we have the in-control mean E[T 2

k (r)] = p regardless of the distribution of
the profiles {Y j}, provided that the latter distribution is non-singular. Thus one can check if the
regularised matrix Λ̃#

0(r) is a good estimate of Λ#
0(r) by comparing the sample average of the

in-control statistics {T 2
k (r) : k = 1, . . . ,bN/rc} with the corresponding theoretical mean value p.
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4. Experiments

In this section, we present experimental results for WDFTC in comparison with other existing
profile-monitoring charts. The following three charts are considered: (1) HTWn, the classical
Hotelling’s T 2 chart based on the full n× 1 vector of wavelet coefficients for each observed
profile; (2) HTWp, a reduced-dimension variant of HTWn that is based on p preselected wavelet
coefficients for each observed profile as detailed below; and (3) the M∗ chart of Chicken et
al. (2009) as described in the second section of this article. Concise summaries of the steps of
procedures HTWn and HTWp are given below.

Chart HTWn: Compute the exact covariance matrix Λ0 = WΣ0WT for the DWTs {d j : j =
1, . . . ,N} of the profiles observed in Phase I, where Σ0 is assumed to be known. In terms of
the prespecified false-alarm rate FAR = 1/ARL0, calculate the upper control limit UCL1 for the
‘ideal’ profile-monitoring statistic T 2

j = (d j − θ0)
T Λ−1

0 (d j − θ0) as the 1− FAR quantile of
the chi-squared distribution with n degrees of freedom. Therefore UCL1 is the solution of the
equation Pr{χ2

n ≤ UCL1} = 1−FAR, where χ2
n denotes a chi-squared random variable with n

degrees of freedom. After the jth profile is observed in Phase II, an out-of-control alarm is raised
if T 2

j > UCL1.
Chart HTWp: Compute the exact covariance matrix Λ0 = WΣ0WT for the DWTs {d j : j =

1, . . . ,N} of the profiles observed in Phase I, where Σ0 is assumed to be known. Select the p
largest-magnitude components of the DWT θ0 = W f0 of the mean in-control profile; and for
the corresponding p×1 subvectors {d#

j : j = 1, . . . ,N} extracted from the DWTs of the profiles
observed in Phase I, letΛ#

0 denote the associated covariance matrix (a submatrix ofΛ0). In terms
of the prespecified false-alarm rate FAR = 1/ARL0, calculate the upper control limit UCL2 for
the ‘ideal’ reduced-dimension profile-monitoring statistic T 2

j =
(

d#
j −θ#

0
)T(
Λ#

0
)−1(d#

j −θ#
0
)

as
the 1−FAR quantile of the chi-squared distribution with p degrees of freedom. Therefore UCL2
is the solution of the equation Pr{χ2

p ≤ UCL2} = 1− FAR. An out-of-control alarm is raised
after the jth profile if T 2

j > UCL2.

Remark 4.1 : The p components of θ0 that are selected for use in HTWp may be different
from the p components of θ0 that minimize the weighted relative reconstruction error defined by
equation (7).

In all the experiments reported below, we used the exact values of the covariance matrices Σ0,
Λ0, and Λ#

0 as required for procedures HTWn and HTWp. Recall that procedure M∗ estimates σ∗
from the average of the median absolute deviations of the n/2 coefficients at the highest levels
of resolution for each of the profiles observed so far in Phase II operation. Moreover, WDFTC
uses the regularised sample covariance matrix, Λ̃#

0 , computed from the Phase I data set of size
N. In this respect the procedures HTWn and HTWp have some advantage over procedures M∗

and WDFTC in the experimental performance evaluation that may not carry over to practical
applications in which Σ0, Λ0, and Λ#

0 are unknown and must be estimated from a Phase I data
set. For profiles of dimension n = 512, we applied WDFTC with a Phase I data set of size
N = 3,000; and for profiles of dimension n = 2,048, we applied WDFTC with a Phase I data set
of size N = 5,000.

In the first part of the experimental performance evaluation of WDFTC and its competitors
HTWn, HTWp, and M∗, we applied those procedures to both normal and non-normal profiles
having both independent and correlated components such that the mean in-control profile f0 is
defined by n = 512 equally spaced points on Mallat’s piecewise smooth function as depicted in
Figure 1. In the second part of the experimental performance evaluation, we applied WDFTC
to a lumber manufacturing process (Staudhammer 2004) in which the mean in-control profile
had n = 2,048 points. In both applications, we estimated the relevant in-control and out-of-
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control ARLs based on 1,000 independent replications of each test process. Corresponding to
each table of estimated ARLs given in this section, there is a matching table of standard er-
rors for those estimated ARLs that is given in the Online Supplement to this article. The data
set for Mallat’s piecewise smooth function and the MATLAB codes (Hanselman and Littlefield
2001) needed to reproduce the results presented in Section 4.1 below are available online via
http://www.ise.ncsu.edu/jwilson/files/wdftc-codes.zip.

4.1. Profiles based on Mallat’s piecewise smooth function

In the experiments with the mean in-control profile f0 based on Mallat’s piecewise smooth
function, we set the target value of ARL0 = 200. The mean out-of-control profile has the form
f1 = f0+η∆σ, where: (1) the shift-size parameter η ∈ {0.25,0.5,0.75,1,2}; (2) the n×n shift-
sign matrix ∆ = diag(δ1, . . . ,δn) is a diagonal matrix with δi ∈ {−1,0,1} for i = 1, . . . ,n; and
(3) σ= (σ1, . . . ,σn)

T is the vector of marginal standard deviations of the respective components
of ε j. Whereas procedure M∗ is based on the Haar wavelet system, we used the symmlet 8
wavelet system in procedures WDFTC, HTWn, and HTWp. Because n = 512, the highest level
of resolution J = log2(n) = 9; and selecting the coarsest level of resolution L = dJ/2e = 5 and
the weight q = 0.5 in equation (7) for the weighted relative reconstruction error, we obtain the
‘optimal’ reduced dimension p = 62 from equation (8). To make a fair comparison of WDFTC
with HTWp, we also set p = 62 in the latter chart.

In the following tables, Global Shift 1 refers to the situation in which δi = 1 for i = 1, . . . ,n so
that there is a positive shift of size ησi in the ith component of the mean profile for i = 1, . . . ,n.
By contrast, Global Shift 2 refers to the situation in which δi = 1 for i = 1, . . . ,n/2 and δi =−1
for i = (n/2)+1, . . . ,n; therefore in the first half of the components of the mean profile, there are
positive shifts of the respective amounts ησ1, . . . ,ησn/2, and in the last half of the components
of the mean profile there are negative shifts of the respective amounts −ησ(n/2)+1, . . . ,−ησn.
Local Shift 1 is specified as follows: δi = 1 for i ∈A1 = {73,74, . . . ,76}∪{288,289, . . . ,296},
and δi = 0 for i < A1. Therefore with Local Shift 1, the 13 selected components of the mean
profile are increased by the respective amounts ησi for i ∈ A1, while all other components of
the mean profile remain unchanged. Local Shift 2 is specified as follows: δi = 1 for i ∈ A2 =
{3,4, . . . ,15}∪{344,345, . . . ,347}, and δi = 0 for i <A2. Therefore with Local Shift 2, the 17
selected components of the mean profile are increased by the respective amounts ησi for i∈A2,
while other components of the mean profile remain unchanged.

4.1.1. Multivariate normal errors

Most existing profile-monitoring charts assume that the observed profiles {Y j : j = 1,2, . . .}
are i.i.d. multivariate normal vectors with a common marginal variance and zero correlations be-
tween each pair of components. With f0 based on Mallat’s piecewise smooth function, we first
consider the following three cases in which the error vector ε j is multivariate normal with mean
0n and covariance matrix Σ0: (1) the components of ε j are independent standard normal random
variables so that Σ0 = In; (2) the components of ε j are correlated standard normal random vari-
ables with common correlation 0.5 so that Σ0 has all its diagonal elements equal to 1.0 and all its
off-diagonal elements equal to 0.5; and (3) the components of ε j are correlated normal random
variables with mean zero, marginal variances given by equation (3), and pairwise correlations
given by equation (2) so that

[
Σ0
]

u,v = σuσvρ(u− v) for u,v = 1, . . . ,n as for the test processes
ME1 and ME2.

Case (1): Error vector has independent standard normal components. Table 4 shows the
values of ARL0 and ARL1 delivered by WDFTC and its competitors for Case (1). WDFTC re-
quired the average batch size r = 3 observed profiles. (Henceforth, the term ’observation’ will be
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used to mean a single observed profile.) All four charts yielded values for ARL0 close to the tar-
get value of 200 observations. To detect Global Shifts 1 and 2 in Phase II (regular) operation with
η > 0.25, WDFTC required one vector of batch means (that is, 3 observations), whereas each of
the other charts required 1 observation. To detect Global Shifts 1 and 2 in Phase II operation with
η = 0.25, WDFTC sometimes required two batch means so that on average WDFTC required
about 4 observations; by contrast, HTWn required about 16 observations, while HTWp and M∗

each required about 2 observations. For the Local Shifts 1 and 2 with 0.25≤η ≤ 1, WDFTC sig-
nificantly outperformed all the other charts, and HTWn usually delivered the worst performance.
The latter conclusion is not surprising, because high dimensionality degrades the performance
of Hotelling’s T 2–type charts (Fan 1996). For Local Shifts 1 and 2 with 0.25 ≤ η ≤ 1, the per-
formance of M∗ was often similar to that of HTWn and was always much worse than that of
WDFTC. For example, to detect Local Shift 1 with η = 0.5, charts M∗ and HTWn each required
about 145 observations, while WDFTC required about 35 observations.

Table 4. ARLs for error vector with independent standard normal compo-
nents.

Shift Type Shift Size WDFTC HTWn HTWp M∗
r̄ = 3

In-Control 0 189.97 210.56 197.81 196.07
Global Shift 1 0.25 3.80 16.13 2.22 2.12

0.5 3.00 1.18 1.00 1.04
0.75 3.00 1.00 1.00 1.00

1 3.00 1.00 1.00 1.00
2 3.00 1.00 1.00 1.00

Global Shift 2 0.25 3.86 16.32 2.34 1.42
0.5 3.00 1.15 1.00 1.05

0.75 3.00 1.00 1.00 1.00
1 3.00 1.00 1.00 1.00
2 3.00 1.00 1.00 1.00

Local Shift 1 0.25 114.41 191.78 164.74 183.95
0.5 35.04 145.24 95.74 145.35

0.75 16.04 101.19 44.07 88.77
1 9.47 65.16 18.58 43.98
2 3.06 6.35 1.39 2.65

Local Shift 2 0.25 112.09 179.01 166.38 197.08
0.5 33.06 135.86 89.34 131.01

0.75 15.14 84.56 40.69 73.69
1 8.82 49.35 15.57 28.19
2 3.04 3.16 1.31 2.05

Case (2): Error vector has correlated standard normal components. Table 5 shows the
values of ARL0 and ARL1 delivered by WDFTC and its competitors for Case (2). As we saw in
Case (1), WDFTC required the average batch size r = 3 observations, and all four charts yielded
values for ARL0 close to the target value of 200 observations. However for Global Shift 1 and
all levels of η , the introduction of a common correlation of 0.5 significantly increased the value
of ARL1 for all four charts compared with the results for Case (1). For example, in Case (1) to
detect Global Shift 1 with η = 0.5, WDFTC required about 3 observations while HTWn, HTWp,
and M∗ each required about 1 observation; by contrast in Case (2) the corresponding values
of ARL1 for WDFTC, HTWn, HTWp, and M∗ were about 134, 190, 180, and 86 observations,
respectively. Overall in Case (2) for Global Shift 1, M∗ significantly outperformed WDFTC,
which in turn significantly outperformed HTWn and HTWp. To detect Global Shift 2 at all levels
of η , WDFTC required about 3 observations while HTWp required about 1 observation; on
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the other hand, the values of ARL1 for HTWn ranged from approximately 4 observations (for
η = 0.25) to approximately 1 observation (for η > 0.25), and the values of ARL1 for M∗ ranged
from approximately 9 observations (for η = 0.25) to approximately 2 observations (for η = 2).
For Local Shifts 1 and 2 and all levels of η , WDFTC substantially outperformed M∗; and for
Local Shifts 1 and 2 with 0.25≤ η ≤ 0.75, WDFTC substantially outperformed HTWp, which in
turn outperformed HTWn. For example, to detect Local Shift 2 with η = 0.5, WDFTC, HTWn,
HTWp, and M∗ required approximately 18, 93, 48, and 199 observations, respectively.

Table 5. ARLs for error vector with correlated standard normal components.

Shift Type Shift Size WDFTC HTWn HTWp M∗
r̄ = 3

In-Control 0 188.73 210.65 198.30 200.48
Global Shift 1 0.25 174.96 210.21 197.38 153.84

0.5 134.04 189.50 180.23 85.59
0.75 78.60 171.14 149.24 39.77

1 47.08 163.73 110.20 20.75
2 12.46 94.86 29.09 3.02

Global Shift 2 0.25 3.01 3.79 1.07 8.84
0.5 3.01 1.15 1.00 5.11

0.75 3.01 1.00 1.00 3.89
1 3.01 1.00 1.00 2.97
2 3.01 1.00 1.00 1.97

Local Shift 1 0.25 71.47 177.53 140.86 200.55
0.5 18.54 112.10 50.69 203.18

0.75 8.75 58.10 16.30 198.04
1 5.56 25.88 4.95 196.10
2 3.01 1.54 1.00 168.72

Local Shift 2 0.25 65.51 163.70 135.48 201.31
0.5 17.57 92.67 47.87 198.74

0.75 8.38 43.98 13.69 197.23
1 5.41 15.86 4.44 196.54
2 3.01 1.13 1.00 164.76

Case (3): Error vector has a general normal distribution. Table 6 shows the values of
ARL0 and ARL1 delivered by WDFTC and its competitors for Case (3). For this test process,
WDFTC required the average batch size r = 8 observations. As we saw in Cases (1) and (2), all
four charts yielded values for ARL0 close to the target value of 200 observations. Because of the
batching operation, WDFTC usually required at least 8 observations to detect shifts of any type.
For Global Shift 1 with all levels of η , HTWn and HTWp outperformed WDFTC, and WDFTC
substantially outperformed M∗. For example, to detect Global Shift 1 with η = 0.5, WDFTC,
HTWn, HTWp, and M∗ delivered ARL1 values of approximately 8, 1, 1, and 175 observations,
respectively. To detect Global Shift 2 at all levels of η , WDFTC required about 8 observations,
while HTWp required about 1 observation; on the other hand the values of ARL1 for HTWn
ranged from approximately 3 observations (for η = 0.25) to approximately 1 observation (for
η > 0.25), and the values of ARL1 for M∗ ranged from 5 observations (for η = 0.25) to 1
observation (for η = 2). For Local Shifts 1 and 2 and all levels of η , WDFTC substantially
outperformed M∗; and for Local Shifts 1 and 2 with 0.25 ≤ η ≤ 0.75, WDFTC substantially
outperformed HTWp, which in turn outperformed HTWn. For example, to detect Local Shift
2 with η = 0.5, WDFTC, HTWn, HTWp, and M∗ required approximately 12, 73, 39, and 201
observations, respectively.
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Table 6. ARLs for error vector with a general normal distribution.

Shift Type Shift Size WDFTC HTWn HTWp M∗
r̄ = 8

In-Control 0 198.99 210.65 201.02 201.44
Global Shift 1 0.25 8.01 3.00 1.04 197.46

0.5 8.01 1.00 1.00 175.29
0.75 8.01 1.00 1.00 123.74

1 8.01 1.00 1.00 77.63
2 8.01 1.00 1.00 14.97

Global Shift 2 0.25 8.01 2.98 1.03 5.29
0.5 8.01 1.00 1.00 3.03

0.75 8.01 1.00 1.00 2.11
1 8.01 1.00 1.00 1.98
2 8.01 1.00 1.00 1.00

Local Shift 1 0.25 57.99 179.06 144.43 201.04
0.5 17.22 113.26 63.98 200.99

0.75 9.19 56.98 21.46 199.10
1 8.08 25.91 7.74 198.38
2 8.01 1.50 1.03 194.82

Local Shift 2 0.25 39.30 145.23 119.47 201.03
0.5 11.96 73.24 38.99 200.64

0.75 8.17 26.50 10.18 199.89
1 8.01 9.13 2.84 199.82
2 8.01 1.02 1.00 198.89

4.1.2. Multivariate shifted exponential errors

To demonstrate the distribution-free aspect of WDFTC, in this subsection we consider two
cases in which the error vector ε j has a multivariate exponential distribution, but f0 is still
based on Mallat’s piecewise smooth function: (1) the components of ε j are independent shifted
standard exponential random variables with mean zero and standard deviation one; and (2) the
components of ε j are shifted standard exponential random variables generated via the NORTA
method (Cario and Nelson 1996) so that a standard normal vector with common correlation
0.5 between each pair of components is transformed into ε j, yielding a pairwise correlations
between components of ε j that are slightly less than 0.5 on the average.

In the following tables, we only report the ARLs delivered by HTWn and HTWp using the con-
trol limits based on calibration method CMA. In Section 2.1, we concluded that the performance
of M∗ was not acceptable when the noise components have exponential marginals. Therefore in
the following tables, we only report the ARLs delivered by M∗ using the control limits based on
calibration method CMB.

Case (1): Error vector has independent shifted standard exponential components. Table
7 shows the values of ARL0 and ARL1 delivered by WDFTC and its competitors for Case (1).
WDFTC required the average batch size r = 3 observations. The small values of ARL0 for HTWn
and HTWp (approximately 11 and 36 observations, respectively) led us to conclude that those
charts were not robust against departures from normality. On the other hand by exploiting its
readily computed, distribution-free control limits, WDFTC delivered ARL0 ≈ 194 observations,
which did not deviate significantly from the target value of 200 observations; moreover, WDFTC
substantially outperformed M∗ for Global Shift 1 and for Local Shifts 1 and 2 at all levels
of η . For Global Shift 2, WDFTC delivered values of ARL1 ranging from approximately 4
observations (for η = 0.25) to 3 observations (for 0.5 ≤ η ≤ 2), while M∗ delivered values of
ARL1 ranging from approximately 5 observations (for η = 0.25) to 1 observation (for η = 2).
All in all, the performance of WDFTC in the case of shifted standard exponential errors provided
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good evidence of the chart’s effectiveness and robustness.

Table 7. ARLs for error vector with independent shifted standard exponen-
tial components.

Shift Type Shift Size WDFTC HTWn HTWp M∗
r̄ = 3 CMA CMA CMB

In-Control 0 193.85 11.42 35.90 200.24
Global Shift 1 0.25 4.24 – – 82.77

0.5 3.00 – – 14.43
0.75 3.00 – – 4.40

1 3.00 – – 2.01
2 3.00 – – 1.00

Global Shift 2 0.25 4.22 – – 4.74
0.5 3.00 – – 2.90

0.75 3.00 – – 2.00
1 3.00 – – 1.78
2 3.00 – – 1.00

Local Shift 1 0.25 123.55 – – 200.26
0.5 39.20 – – 197.22

0.75 18.07 – – 194.17
1 10.55 – – 186.59
2 3.17 – – 110.55

Local Shift 2 0.25 122.26 – – 200.87
0.5 35.62 – – 198.08

0.75 16.54 – – 197.37
1 9.87 – – 189.51
2 3.07 – – 96.01

Case (2): Error vector has correlated shifted standard exponential components. Table
8 shows the values of ARL0 and ARL1 delivered by WDFTC and its competitors for Case (2).
WDFTC required the average batch size r = 3 observations. The extremely small values of ARL0
for HTWn and HTWp (approximately 3 and 5 observations, respectively) reinforced our conclu-
sion that those charts were not robust against departures from normality. Both WDFTC and M∗

delivered values of ARL0 close to the target value of 200 observations; but whereas the control
limits for WDFTC are easily evaluated, the control limits for M∗ must be estimated by cumber-
some, compute-intensive simulation experiments. For Global Shift 1 with η = 0.25, WDFTC
and M∗ performed about the same, delivering ARL1 values of approximately 170 observations
and 176 observations, respectively; but M∗ significantly outperformed WDFTC for 0.5≤ η ≤ 2.
For Global Shift 2, WDFTC delivered values of ARL1 ranging from about 6 observations (for
η = 0.25) to about 3 observations (for 0.5≤ η ≤ 2), while M∗ delivered values of ARL1 rang-
ing from about 10 observations (for η = 0.25) to about 2 observations (for η = 2). For Local
Shifts 1 and 2 with all values of η , WDFTC substantially outperformed M∗. For example, to
detect Local Shift 2 with η = 0.5, WDFTC required approximately 60 observations, while M∗

required approximately 224 observations. The results for Case (2) provided further evidence of
WDFTC’s robustness and effectiveness.

4.2. Laser range sensor data

In this subsection, we summarize the experimental results for an application of WDFTC to
laser range sensor (LRS) data observed in a lumber-manufacturing process. LRS equipment can
measure the thickness of a sawed board with a high degree of accuracy, and the development
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Table 8. ARLs for error vector with correlated shifted standard exponential
components.

Shift Type Shift Size WDFTC HTWn HTWp M∗
r̄ = 3 CMA CMA CMB

In-Control 0 197.06 2.83 4.68 200.85
Global Shift 1 0.25 170.16 – – 176.49

0.5 163.11 – – 115.93
0.75 141.20 – – 65.55

1 110.05 – – 39.91
2 34.84 – – 5.90

Global Shift 2 0.25 5.90 – – 9.69
0.5 3.01 – – 5.61

0.75 3.01 – – 4.01
1 3.01 – – 3.17
2 3.01 – – 1.93

Local Shift 1 0.25 171.70 – – 230.75
0.5 61.63 – – 233.84

0.75 28.96 – – 223.00
1 15.94 – – 217.93
2 5.13 – – 197.92

Local Shift 2 0.25 165.25 – – 226.96
0.5 59.68 – – 224.39

0.75 26.22 – – 227.72
1 14.37 – – 228.05
2 4.89 – – 198.83

of such equipment has provided ample opportunities for quality engineers in the industry to
improve and maintain the quality of the manufactured boards (Staudhammer 2004).

Figure 5 is a plot of a sample stream of board-thickness measurements taken along the length
of a certain type of board from a particular sensor location as detailed in Staudhammer et al.
(2006). Four laser sensors are set up to measure the thickness of sawed boards of various types
at two different locations on both sides of the board. In this subsection, we use the thickness
measurements from one laser location only, but the measurements from all four laser locations
can easily be incorporated to monitor various kinds of board defects as detailed below.

For each sawed board, over 2,000 thickness measurements are taken from each laser location;
and the physical proximity of the locations on the board for successive thickness measurements
naturally induces correlation between those measurements. On the other hand, Staudhammer
(2004) finds that there is no significant correlation between measurements taken on different
boards, and she formulates statistical models to describe the variation in board thickness along
the length of each individual board. Staudhammer proposes new profile-monitoring charts to
detect various types of board defects, and she evaluates the performance of those charts using a
comprehensive simulation study based on the proposed statistical models.

From equation (1) of Staudhammer et al. (2006), we see that for a particular saw configuration,
type of board, and side of the board, the statistical model for the thickness of the uth board
(expressed in cm) as measured from the vth laser location at the ith horizontal distance xi cm
along the length of the board has the form

yuvi = µ0 +Bu +Lv +BLuv + εuvi for i = 1, . . . ,n, (10)

where: (1) µ0 is the true mean in-control board thickness taken over the population of sawed
boards defined by the given saw configuration, type of board, and side of the board; (2) Bu is
the random board effect for the uth sample board, which is assumed to be i.i.d. N(0,σ2

B); (3)
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Figure 5. Sample stream of board-thickness measurements.

Lv is the random effect of the vth laser location, which is assumed to be i.i.d. N(0,σ2
L); (4)

BLuv is the random effect arising from the interaction of the board and laser-location effects,
which is assumed to be i.i.d. N(0,σ2

BL); and (5) εuvi is the residual error associated with the
thickness measurement taken on the uth board from the vth laser location at the ith distance
xi along the board so that the error process {εuvi : i = 1, . . .n} is assumed to be stationary and
correlated with marginal distribution N(0,σ2

ε ). Staudhammer et al. (2006) obtain the following
parameter estimates for the model defined by equation (10): σ̂B = 0.0204 cm, σ̂L = 0.0052 cm,
and σ̂BL = 0.0238 cm.

The authors find that for the board type BB considered in this article and for each value of u
and v, the error process {εuvi : i = 1, . . .n} can be adequately represented by an ARIMA(1,1,1)
time series model,

(1−αB)(εi− εi−1) = (1−βB)ζi for i = 1,2, . . . , (11)

where: (1) B is the backward shift operator so that (1−αB)εi = εi−αεi−1; and (2) the white-
noise process {ζi : i = 1,2, . . .} consists of i.i.d. N(0,σ2

ζ
) random variables. The authors obtain

the following parameter estimates for the error model defined by equation (11): the autoregres-
sive parameter α̂ = 0.00053 cm, the moving-average parameter β̂ = 0.00178 cm, and the white-
noise standard deviation σ̂

ζ
= 0.00967 cm. We apply WDFTC to board-thickness data generated

according to the statistical model specified by equations (10) and (11); and we compare the per-
formance of WDFTC with that of the profile-monitoring charts proposed by Staudhammer et al.
(2006, 2007) for detecting various types of defects in the lumber-manufacturing process.

Rasmussen et al. (2004) identify common defects that can arise in lumber manufacturing. In
the experimental performance evaluation, we consider four such defects: the machine position-
ing problem, taper, flare, and snake. Taken from Staudhammer (2004) with permission from the
author, Figure 6 illustrates all four types of defects.

The machine positioning problem (MPP) is one of the simplest defects, resulting in a uniform
change in thickness along the length of the board. The taper defect results in a gradual thickening
or thinning along the length of the board. The flare is one of the more complex defects, which
results in progressive board thickening only at the end of the board. The snake is another complex
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Figure 6. Common defects in lumber manufacturing.

defect that causes high within-board variation of the board’s thickness along the length of the
board. For more-detailed descriptions of the these defects, see Staudhammer (2004). We use the
following synthetic out-of-control conditions with various levels of severity to simulate all four
types of defects as follows:

• For the MPP defect, we used the out-of-control mean µ1 = µ0 + δ , where the shift δ ∈
{0.0254, 0.0508, 0.0762, 0.1016} (expressed in cm).

• For the taper defect, we took E[yuvi] = µ0 + xiδ/xn for i = 1, . . . ,n and δ ∈ {0.0508, 0.1016,
0.1524, 0.2032} (expressed in cm) so that the mean deviation from the in-control board thick-
ness µ0 increased in proportion to the horizontal distance xi along the length of the board
(where the board length xn = 244 cm).

• For the flare defect, we took

E[yuvi] =

{
µ0 , if xi < xn−15 cm ,

µ0 +(xi− xi0)δ/(xn− xi0) , if xi ≥ xn−15 cm ,

for i0 = max{i : xi < xn−15} so that tapering occurs only along the last 15 cm of the board’s
length.

• For the snake defect, we took E[yuvi] = µ0+Asin(2πxi/P), adding a waveform with the period
P = 182.88 cm and with the amplitude A ∈ {0.0508, 0.1016, 0.1524, 0.2032} (all in cm) for
i = 1, . . . ,n = 2,048.

Table 9 summarizes the ARLs delivered by WDFTC when it is applied to the LRS data for
the target false alarm rate FAR = 0.0027 alarms/profile (sampled board), which is equivalent to
setting the target value ARL0 = 370 profiles (boards). For ease of comparison, the last column
of Table 9 shows the results reported by Staudhammer et al. (2006, 2007) for their four profile-
monitoring charts that are specifically designed to detect sawing defects of type MPP, taper,
flare, and snake, respectively. Staudhammer et al. (2006, 2007) report their results using graphs
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of the corresponding rates of occurrence for true and false alarms; in Table 9 we convert those
rates into the associated values of ARL0 and ARL1.

Table 9. ARLs for WDFTC and the profile charts (PCs) of
Staudhammer (2004)

Shift Type Shift Size WDFTC PC
δ or A (cm) r̄ = 6

MPP 0 358.15 333.33
0.0254 208.35 20.00
0.0508 60.60 3.33
0.0762 30.05 1.25
0.1016 17.85 1.00

Taper 0 358.15 200.00
0.0508 190.50
0.1016 57.16
0.1524 29.07
0.2032 17.23

Flare 0 358.15 50.00
0.0508 282.76
0.1016 109.78
0.1524 50.34
0.2032 28.57

Snake 0 358.15 76.92
0.0508 112.80
0.1016 31.84
0.1524 16.62
0.2032 9.38

Because n = 2,048, we considered this problem to exemplify high-dimensional profile moni-
toring; and therefore we set q= 0.7 to obtain more effective dimension reduction when minimiz-
ing the WRRE. With this choice of q, we solved equation (8) for various values of L. Ultimately
we decided to set L= 5 because that choice resulted in a good data-compression ratio, and further
meaningful dimension-reduction was not achieved by using smaller values of L. With q = 0.7
and L = 5, equation (8) yielded p = 92, achieving a data-compression ratio of approximately
4.5%. WDFTC delivered the average batch size r = 6 observations.

In Staudhammer et al. (2006, 2007), various Shewhart-type profile-monitoring charts are tai-
lored respectively to the detection of a specific type of defect; and the development of such
highly specialized charts can require an extensive modelling-and-analysis effort. See, for exam-
ple, the authors’ approach to detecting the snake defect. Such modelling efforts are not required
to apply WDFTC. It is also noteworthy that WDFTC can detect all the different types of de-
fects without the need for frequent recalibration, although some defects are harder to detect than
others (for example, the flare defect).

From Table 9 we see the profile chart of Staudhammer et al. (2006, 2007) that is specifically
designed for the MPP defect delivered substantially smaller values of ARL1 than WDFTC de-
livered for this particular defect. For other kinds of defects, however, the profile charts of Staud-
hammer et al. (2006, 2007) delivered values of ARL0 that were far below the target value of 370
observations; for example, the values of ARL0 for the charts designed to detect taper, flare, and
snake defects were 200, 50, and 77 observations, respectively. Staudhammer et al. (2006, 2007)
acknowledge the difficulty of adjusting their profile charts to obtain the target ARL0, because it
will require estimating the tails of the run length distribution, which is a challenging problem.
Overall, we concluded that WDFTC outperformed the profile-monitoring charts of Staudham-
mer et al. (2006, 2007) in this application.
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5. Conclusion

In this article we described WDFTC, a wavelet-based distribution-free chart for monitoring
high-dimensional profiles whose components can have non-normal distributions, variance het-
erogeneity, or substantial intercomponent correlations. We also formulated the following: (1)
an effective dimension-reduction technique based on the discrete wavelet transform and the
concept of weighted relative reconstruction error; and (2) a covariance-matrix regularisation
scheme and a batch-size determination procedure that significantly improve the effectiveness of
the associated Hotelling’s T 2–type statistics. When tested on normal or non-normal profiles with
dimension n = 512 and with independent or correlated components, WDFTC was competitive
with other commonly used charts, including the chart M∗ of Chicken et al. (2009); moreover,
WDFTC substantially outperformed all those charts for small- to medium-size local shifts. We
found another advantage of WDFTC is that its control limits are rapidly evaluated numerically
instead of requiring calibration via cumbersome, time-consuming trial-and-error simulations.

When WDFTC was applied to lumber-manufacturing profiles of dimension n = 2,048, we
found that WDFTC was sufficiently versatile to detect a wide variety of defect types with rea-
sonable sensitivity while maintaining the user-specified overall rate of generating false alarms.
By contrast each of the profile-monitoring charts of Staudhammer et al. (2006, 2007) was specif-
ically designed to detect a single defect type; and although we found that each such chart often
outperformed WDFTC in detecting its relevant defect, we encountered substantial difficulties in
trying to calibrate those specialized charts so as to deliver the target false-alarm rate when those
charts are operated separately or jointly. Overall we concluded that WDFTC also outperformed
the profile-monitoring charts of Staudhammer et al. (2006, 2007).
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