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Abstract—In this paper, we review the scattering transform
in the univariate setting. After reviewing its properties including
translation invariance, stability under small diffeomorphism, and
ability to carry high-frequency information, we investigate how
these properties can be used in understanding the effect of the
scattering transform when various types of signal deformation
are considered. We find that, together with the Fourier transform
modulus, the scattering transform can be used in classifying some
of these deformations.

I. INTRODUCTION

Image or sound is typical signal information. Often, this
information does not change with translation, or rotation, and
it is stable under small diffeomorphism.

For example, a picture of cat is the same cat picture whether
we translate it or rotate it. Also, we can recognize it as a cat
picture even though we smoothly crease the picture.

The scattering transform in [1] is introduced motivated
by this observation. It is shown to be translation invariant,
and stable under small diffeomorphism, and to carry high-
frequency information. It is also shown that the scattering
transform can capture the interference when several signals
are synthesized [2]. Therefore, we may say that the scattering
transform plays a role of an indicator capturing important
information of the data.

There exist other transforms that play a similar role but
they are limited in the sense that they satisfy only part
of the above properties. For example, the Fourier transform
modulus is translation invariant but it is not stable under small
diffeomorphism.

The scattering transform is used in applications, for ex-
ample, in image classification [3], [4] and for learning data
on graph [5], often outperforming the state-of-art methods
currently used in those applications.

Although the scattering transform can be applied to the data
in any dimension, and it can be used in combination with a
finite group or even with a compact Lie group such as the
rotation group, in this paper, we concentrate on the univariate
setting and do not combine with the rotation group since in
the univariate case the rotation group becomes trivial.

We review the background of the scattering transform and
look into the principles how they can lead to the scattering
transform satisfying all the properties mentioned above. Then,

by concrete examples through MATLAB, we gain the un-
derstanding of the scattering transform as an indicator when
applied for the univariate data. In particular, we go beyond the
specific form of deformation studied in [1], which is referred
to as the diffeomorphism in the paper and also as the elastic
translation in [2]. We consider not only this elastic translation
type but also other ways such as the additive and multiplicative
type to deform signals, both smoothly and non-smoothly, and
investigate how they behave under the scattering transform.
We discuss how the scattering transform, with the help of the
Fourier transform modulus, can be used in classifying some
of these deformations.

II. SCATTERING TRANSFORM

In this section, we review the scattering transform. We start
with the wavelet system which plays an essential role in defin-
ing the scattering transform in Section II-A. In Section II-B
and Section II-C, we present some of the main ingredients that
are helpful in understanding the scattering transform. Finally,
in Section II-D, we present the definition of the scattering
transform and discuss its properties.

A. Wavelets for Scattering Transform

In the scattering transform, a wavelet system generated by
dilating a mother wavelet ψ ∈ L2(R) is used. In the sense that
only the dilation operator is used, instead of both the dilation
and the translation operators being used, it is not the most
common form of wavelet systems that are used nowadays (see,
for example, [6] or [7]). This wavelet system has been used
in the literature, especially in connection with the Littlewood-
Paley theory [8].

Let ψ ∈ L1(R) ∩ L2(R) be a mother wavelet of the
form ψ(x) = eiηxθ(x) with ψ̂(0) = 0, where η ∈ R and
θ̂(ω) is a real-valued function concentrated on a ball centered
at 0 with radius of order of π. Here and below, we use
the notation f̂ to denote the Fourier transform of f , i.e.
f̂(w) :=

∫
f(x)e−ixwdx. Then ψ̂(ω) = θ̂(ω − η), which

means that the frequency of ψ is concentrated on the ball
centered at η with the same radius of θ̂.

The wavelet system is obtained from a mother wavelet by
dilating at a scale of 2j for j ∈ Z. More precisely, we let
Λ∞ := 2Z, and define ψλ, λ = 2j ∈ Λ∞, as the dilated



Fig. 1. Littlewood-Paley condition

wavelet with a scale 2−j , i. e. ψλ(x) := 2jψ(2jx). Then
ψ̂λ(ω) = ψ̂(2−jω) = ψ̂(λ−1ω) = θ̂(λ−1ω − η), which
means that the frequency of ψλ is concentrated in the ball
centered at λη with a radius proportional to 2j . Thus, ψλ can
be considered as the band frequency filter associated with λ.

For a wavelet system {ψλ}λ∈Λ∞
, the wavelet transform of

f ∈ L2(R) is defined as

W [λ]f := f ∗ ψλ =

∫
f(u)ψλ(· − u)du.

The wavelet transform is used in defining the prototype
operator WJ of the one-step propagator UJ (c.f. (5)), which
is used in defining the windowed scattering transform (see
Section II-B). The prototype operator WJ at a scale 2J

keeps wavelets with frequency dilation 2j > 2−J only.
The lower frequencies which cannot be covered by these
wavelets can be expressed by averaging over the spatial
domain proportional to 2J , as in AJf = f ∗ φ2J with
φ2J (x) := 2−Jφ(2−Jx), where the averaging function φ

satisfies |φ̂(ω)|2 =
0∑

j=−∞
|ψ̂(2−jω)|2. Thus,

WJf := {AJf, (W [λ]f)λ∈ΛJ
}

where
ΛJ := {λ = 2j : 2j > 2−J} ⊂ Λ∞. (1)

We further assume that |φ̂(0)| = 1, and for a.e. w ∈ R,

|φ̂(2Jω)|2 +
∑
j>−J

|ψ̂(2−jω)|2 = 1. ∀J ∈ Z,

which is referred to as the Littlewood-Paley condition in [1].
Figure 1 shows how the Littlewood-Paley condition is sat-

isfied for the orthogonal Battle-Lemarié cubic spline wavelet,
which is the mother wavelet we use for the scattering transform
in all of our experiments in this paper. The Littlewood-Paley
condition guarantees the operator WJ , and hence UJ as well,
to be unitary operator on L2(R).

If, in addition, the functions φ and ψ satisfy twice dif-
ferentiability together with certain decay conditions (which
we choose not to explicitly write – see [1] for details), the

associated scattering transform can be shown to be Lipschitz-
continuous under diffeomorphism, which is used to gain the
stability under small diffeomorphism in [1]. We will discuss
more about this in Section II-D.

Furthermore, in order to guarantee that the windowed scat-
tering transform preserves the norm of the original function,
ψ has to be admissible (again, we do not explicitly write the
condition here, and refer the readers to [1] for details).

Lastly, |ψ̂(ω)| 6= 0 a.e should be satisfied in order for the
measures of cylinders of finite paths (c.f. (6) and (7)) not to
vanish, which is essential in defining the scattering transform.

One of the examples satisfying all of the above conditions
is the orthogonal Battle-Lemarié cubic spline wavelet [9],
[10], and we use this wavelet for all of our experiments in
Section III.

B. Scattering Propagator and Windowed Scattering Transform

Let us consider the translation-invariant property. Since the
integral of the operator which commutes with translations is
translation-invariant, and since the wavelet transform is com-
muting with translation, the integral of the wavelet transform
will be translation-invariant. However, since ψ̂(0) = 0, the
integral of the wavelet transform vanishes everywhere because∫

(f ∗ ψ)(x) dx = 0.

To resolve this matter, the modulus of the wavelet transform
can be taken as the function which commutes with translations
rather than the wavelet transform itself. However, this still has
a problem because all the frequencies except zero will be lost
as can be seen from∫

|(f ∗ ψ)(x)| dx = |̂f ∗ ψ|(0).

By obtaining the modulus of the wavelet transform several
times along several frequencies, such lost high-frequency
information can be recovered [3].

A (unit-length) scattering propagator U [λ] is first defined as
the modulus of the wavelet transform along a ‘unit-length’ fre-
quency (c.f. (2)), and it commutes with translations. By using
a path, which enumerates several frequencies in a fixed order,
the (generalized) scattering propagator U [λ1, λ2, · · · , λm] (c.f.
(3)) can be defined for finite-length freqencies, and it also
commutes with translations. The windowed scattering trans-
form will be defined by integrating a scattering propagator
defined along a frequency path over a localized space and by
weakening that localization, the operator will be translation-
invariant.

A path, which can be comparted by the length, is defined as
follows. Each element λ = 2j ∈ Λ∞ will be called as a unit-
length path. For each m ∈ N, m-length path p is an ordered
sequence of length m, which is an element of Λm∞ := {p =
(λ1, λ2, · · · , λm) : λi ∈ Λ∞,∀i}. We would consider a path
of 0-length, which we call an empty path ∅, and denote also
as Λ0

∞ := ∅. A collection of finite paths P∞ is the union of
Λm∞ for all m ∈ N ∪ {0}. That is, P∞ =

⋃
m∈N∪{0}

Λm∞. An
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Fig. 2. Scattering propagator along several finite paths

infinite-length path is an infinite ordered sequence which is an
element of an infinite product Λ∞∞ of Λ∞.

A scattering propagator U [λ] over a unit-length path λ is
defined as the modulus of the wavelet transform: For f ∈
L2(R) and λ ∈ Λ∞,

U [λ]f := |f ∗ ψλ|. (2)

For a positive length path p = (λ1, λ2, · · · , λm) ∈ P∞\Λ0
∞,

a (generalized) scattering propagator U [p] is defined as

U [p] := U [λm] · · ·U [λ2]U [λ1].

That is, for f ∈ L2(R),

U [p]f = ||f ∗ ψλ1 | ∗ ψλ2 | ∗ · · · | ∗ ψλm |. (3)

Also, for an empty path ∅ = Λ0
∞ ⊂ P∞, we would define

the scattering propagator U [∅] as U [∅]f := f , for f ∈ L2(R).
Recall that for J ∈ Z, ΛJ defined in (1) is a unit-length

path whose frequency is restricted. We let Λ0
J := ∅ as well,

and define ΛmJ , for m ∈ N, and PJ in a similar fashion, using
ΛJ in place of Λ∞, so that each of these collections contains
only a path with frequency higher than 2−J .

For p ∈ PJ and f ∈ L2(R), the windowed scattering
transform SJ [p]f is defined as

SJ [p]f := (U [p]f) ∗ φ2J =

∫
U [p]f(u)φ2J (· − u)du. (4)

For fixed J ∈ Z, the one-step propagator UJ (similar to the
previous WJ ) is defined as follows: For f ∈ L2(R),

UJf := {AJf, (U [λ]f)λ∈ΛJ
}. (5)

Using the windowed scattering operator, it can be written as

UJf = {SJ [∅]f, (U [λ]f)λ∈ΛJ
}.

After applying the one-step propagator to a function f ,
applying the operator again to (U [λ]f)λ∈ΛJ

gives, for each
λ ∈ ΛJ ,

UJ(U [λ]f) = {AJ(U [λ]f), (U [λ′](U [λ]f))λ′∈ΛJ
},

which can also be written as

UJ(U [λ]f) = {SJ [λ]f, (U [λ, λ′]f)λ′∈ΛJ
}.

The one-step propagator can be iteratively applied to U [p]f
and this process is illustrated in Figure 2.

The windowed scattering transform SJ can be considered
as a localization of the scattering transform over the spatial
domain proportional to 2J . As J goes to ∞, the spatial
localization of the windowed scattering transform may be
weakened. Observing this property, the scattering transform
S is defined. Its definition and the fact that for f ∈ L2(R)
with certain conditions, Sf lies in a Hilbert space generated
from a path space P∞ will be discussed in Section II-D. The
definition of P∞, and a measure for it will be discussed in
the next subsection.

C. Path Space and Measure for Scattering Transform

In this subsection, P∞, the limit of the frequency path
sets PJ , will be defined and the measure on the limit will
be introduced.

For any two paths p = (λ1, · · · , λm) , p′ = (λ′1, · · · , λ′n) of
finite length, the addition can be defined by concatenating:

p+ p′ := (λ1, · · · , λm, λ′1, · · · , λ′n)

Hence, for a unit-length path λ, p+ λ := (λ1, · · · , λm, λ) .
Since we have PJ ⊂ PJ+1 for all J ∈ Z, for any p ∈ PJ ,

p can be extended in PJ+1 to p+2−J . This path p+2−J can
be further extended in PJ+2 to p+ 2−J + 2−(J+1).

By repeating this process as follows

PJ PJ+1 PJ+2 · · ·

p p+ 2−J p+ 2−J + 2−(J+1) · · · ,

⊂ ⊂ ⊂

∈ ∈ ∈

infinitely many times, p can be extended to a path of infinite-
length. Therefore, as J increases, this process will prolong the



paths and P∞, the limit of the path set PJ , should contain the
infinite-length paths, and it is easily seen that P∞ = P∞∪Λ∞∞.

Since Λ∞ is a discrete subset of R, the discrete topology
is used on Λ∞. Then, since the infinite-length path set Λ∞∞
is defined by ordered products of Λ∞, open sets of Λ∞∞ have
cylinderical shapes: For each λ ∈ Λ∞ and n ≥ 0, let

Cn(λ) := {p = (λ1, λ2, · · ·) ∈ Λ∞∞ : pn+1 = λ}

be an open element of Λ∞∞ which is referred to as a cylinder.
Since each cylinder set Cn(λ′1, λ

′
2, · · · , λ′m) := {p =

(λ1, λ2, · · ·) ∈ Λ∞∞ : λn+1 = λ′1, λn+2 = λ′2, · · · , λn+m =
λ′m} is a finite intersection of open cylinders as in

Cn(λ1, λ2, · · · , λm) =

m⋂
i=1

Cn+i(λi),

cylinder sets are both open and closed, and thus, the topology
is a σ-algebra and a measure can be defined.

Also, for the finite path set P∞, the appropriate cylinder set
can be associated with p = (λ1, λ2, · · · , λn) ∈ P∞ as follows:

C(p) := C0(p) = {q ∈ Λ∞∞ : q1 = λ1, q2 = λ2, · · · , qn = λn},

where q = (q1, q2, · · ·) and qi’s are all unit-length paths. Note
that for each p ∈ P∞, C(p) ⊂ P∞.

Since open cylinders Cn(λ) can be expressed as a union of
cylinder sets, Cn(λ) =

⋃
(λ1,λ2,···,λn)∈Λn

∞

C(λ1, λ2, · · · , λn, λ),

two sets, C(·) and Cn(·), will generate the same σ-algebra.
Thus, for all p = (λ1, λ2, · · · , λm) ∈ P∞, a σ-finite Borel

measure µ can be defined as

µ(C(p)) := ‖U [p]δ‖2 , (6)

where U [p]δ = ||ψλ1
| ∗ ψλ2

| ∗ · · · | ∗ ψλm
|.

Cylinder sets of frequency resolution can be defined as
follows: For each J ∈ Z,

CJ(p) :=
⋃

λ∈Λ∞,|λ|≤2−J

C(p+ λ) ⊂ C(p).

Also, note that for each p ∈ P∞, CJ(p) ⊂ P∞ for all J ∈ Z.
Since CJ(p) is defined by using the cylinder sets C(·)

without frequency resolution, the measure on CJ(p) can be
derived (c.f. Proposition 3.2 in [1]) by using the measure in
(6): For all p ∈ P∞,

µ(CJ(p)) = ‖SJ [p]δ‖2 . (7)

Since C(p), CJ(p) ⊂ P∞ for each p ∈ P∞ and for all
J ∈ Z, all paths in P∞ can be embedded to P∞ = P∞∪Λ∞∞
through two types of cylinders C(p) and {CJ(p)}J∈Z.

Then, the distance between q and q′ for q, q′ ∈ P∞ can be
defined as follows by using (7): For any distinct q, q′ ∈ P∞,

d(q, q′) := inf
q,q′∈CJ (p)

µ(CJ(p)),

and d(q, q) := 0. It can be shown that P∞ is complete with
this metric.

D. Definition and Properties of Scattering Transform
Using the windowed scattering transform SJ [p]f , a new

function SJf on P∞ × R is defined as

SJf(q, x) :=
∑
p∈PJ

SJ [p]f(x)

‖SJ [p]δ‖
1CJ (p)(q),

where 1CJ (p) is the characteristic function on CJ(p) in P∞.
The windowed scattering transform SJ [p]f averages U [p]f

over the spatially localized space depending on J . As J goes
to ∞, the windowed scattering transform loses the spatial
localization. (i.e. loses the spatial variable ‘x’ dependence.)
By using the marginal L2(R) norm of SJf(q, x) along x for
fixed q, define

SJf(q) :=

∫
|SJf(q, x)|2 dx =

∑
p∈PJ

‖SJ [p]f‖
‖SJ [p]δ‖

1CJ (p)(q),

which depends only on the path variable ‘q’. After all, it can
be shown (c.f. Theorem 3.5 in [1]) that for all f ∈ L2(R)
and q ∈ P∞, SJf(q) converges strongly as J goes to∞ with
Condition (3.15) at [1] satified in a dense set of L2(R), and
this limit is defined as the scattering transform Sf(q). It can
further be shown that Sf ∈ L2(P∞, dµ) with norm denoted
by ‖·‖P∞ .

We now study the properties of the scattering transform S.
Suppose that f, h ∈ L2(R) satisfy Condition (3.15) in [1].
Then by Theorem 3.5 in [1] again, we have∥∥Sf − Sh∥∥P∞ = lim

J→∞
‖SJ [PJ ]f − SJ [PJ ]h‖ ,

where SJ [PJ ]f := {SJ [p]f}p∈PJ
. Thus, the scattering trans-

form S can inherit the properties of SJ [PJ ]. Properties of
SJ [PJ ] include the following:

1) Translation invariance: Let Lcf(x) := f(x− c) be the
translation of f ∈ L2(R) about c ∈ R. Then (c.f. Theorem
2.10 in [1]), for all f ∈ L2(R) and c ∈ R,

lim
J→∞

‖SJ [PJ ]f − SJ [PJ ]Lcf‖ = 0.

2) Stability under small diffeomorphism: Lipschitz conti-
nuity can be used to guarantee the stability under the small
diffeomorphism. The windowed scattering transform has Lip-
schitz continuity under a small C2-diffeomorphism τ of R
sufficiently close to a translation (c.f. Theorem 2.12 in [1]): For

all f ∈ L2(R) with ‖U [PJ ]f‖1 :=
∞∑
m=0
‖U [ΛmJ ]f‖ < ∞ and

for all τ ∈ C2(R) with ‖∇τ‖∞ ≤
1
2 , there exists a constant

c such that

‖SJ [PJ ]Lτf − SJ [PJ ]f‖ ≤ c ‖U [PJ ]f‖1K(τ),

where Lτf(x) := f(x− τ(x)) and

K(τ) := 2−J ‖τ‖∞+‖∇τ‖∞max

(
log
‖∆τ‖∞
‖∇τ‖∞

, 1

)
+‖Hτ‖∞ ,

with ‖∆τ‖∞ := sup
x,u∈R

|τ(x)−τ(u)| and Hτ being the Hessian

tensor of τ .

From the above results, we see that the scattering transform
is translation invariant and stable under small diffeomorphism.



III. SCATTERING TRANSFORM UNDER DEFORMATION

In this section, we study how the scattering transform
behaves under different kind of deformations of the data.

The idea is that when a signal is deformed, often, we do
not have the information about the type of deformation. We
try to find out which type of deformation is underwent by
observing the behaviors of the scattering transform and the
Fourier transform modulus of each deformed signal.

We consider three different types of signal deformation. The
first one is the elastic translation considered in [1], [2]. The
elastic translation considered in these papers is the smooth
deformation. In this paper, we will consider the non-smooth
elastic translation as well. The second type we consider is the
additive deformation, and the third type is the multiplicative
deformation.

Whereas the deformation by the elastic translation is made
through the ‘domain’ of the signal f(x) as in the form of
f(x−g(x)) where g(x) is an appropriate deformation function,
the other two types are obtained by adding or multiplying the
deformation function g(x) on the ‘range’ of the signal f(x)
as in the form of f(x) + g(x) or f(x)g(x).

One can consider the deformation function g(x) of the form
gα(x) = (1−α)s(x)+αe(x), where α is a number in between
0 and 1, and s(x) is a smooth function, and e(x) is a non-
smooth function. In this paper, to simplify our discussion, we
concentrate the two cases only; when α = 0, i.e., g0 = s,
which would express a smooth deformation, and when α = 1,
i.e. g1 = e, which would express a non-smooth deformation.

Throughout this section,the scattering transform obtained by
the orthogonal Battle-Lemarie cubic spline wavelet will be
used. In order to simplify the discussion, we fix the signal f
and the smooth function s as f(x) = 3 cos 14x + sin 5x and
s(x) = 1/(1 + exp(−x)). We note that the smooth function s
here satisfies the properties that the diffeomorphism τ needs to
satisfy for the Lipschitz continuity of the scattering transform
(c.f. Section II-D). The non-smooth function e is defined as the
absolute value of a Gaussian noise function [11], taken from
the Gaussian distribution with mean 0 and variance 1

25 . We
further normalize e so that ‖e‖∞ ≈ 0.7 ‖s‖∞ for the smooth
function s fixed as above, since, with this normalization, we
find the two functions are visually comparable.

A. Deformation Type 1: Elastic Translation

The signal deformation by the first type, the elastic transla-
tion with a deformation function gα, can be expressed as

D1,αf(x) := f(x− gα(x)), for α = 0 or 1.

The graph of the original signal f and deformed signals
D1,0f , D1,1f are shown in the top row of Figure 3. The figures
in the middle row show the scattering transform Sf , S(D1,0f),
and S(D1,1f), and the bottom row shows the Fourier modulus
|f̂ |, |D̂1,0f | and |D̂1,1f |. We see that Sf and S(D1,0f) are
very similar as the theory of [1] guarantees, but S(D1,1f) is
different from Sf since the function e used for the elastic
translation in this case is not smooth.

Fig. 3. Scattering transform and Fourier modulus under the elastic translation
studied in Section III-A

Fig. 4. Scattering transform and Fourier modulus under the additive defor-
mation studied in Section III-B

By using the measure of the path space discussed earlier in
Section II-C, it can be shown that the x-axis of the scattering
transform is designed to contain the frequency information
(c.f. Section 3.3 in [1]). This can be observed by comparing
the graphs in the second row with the ones in the third row
of Figure 3. We see that where the scattering transform and
the Fourier modulus are supported are the same although the
value of the two transforms differ.

B. Deformation Type 2: Additive Deformation

The signal deformation of the additive type has the form

D2,αf(x) := f(x) + gα(x), for α = 0 or 1.

The top row of Figure 4 shows the graph of the original
function f , and additively deformed signals D2,0f and D2,1f .



Fig. 5. Scattering transform and Fourier modulus under the multiplicative
deformation studied in Section III-C

The middle row shows the graphs of the scattering transform
Sf , S(D2,0f) and S(D2,1f). The bottom row shows the graph
of the Fourier modulus |f̂ |, |D̂2,0f | and |D̂2,1f |. In this case,
the scattering transform of the deformed signals look similar
to that of the original signal. However, a closer look at the
differences |S(D2,0f)−Sf | and |S(D2,1f)−Sf | in Figure 6
reveals that |S(D2,0f) − Sf | shows the low frequency con-
tent more strongly, which indicates the smooth deformation,
whereas the frequency content of |S(D2,1f) − Sf | is spread
out, which indicates the non-smooth deformation.

C. Deformation Type 3: Multiplicative Deformation

The multiplicative type deformation can be expressed as

D3,αf(x) := f(x)gα(x), for α = 0 or 1.

Figure 5 shows the result about the multiplicative deforma-
tion. In top figures, the original signal f and deformed signals
D3,0f , D3,1f can be seen. The middle graphs show the scat-
tering transforms Sf , S(D3,0f) and S(D3,1f). The bottom
graphs show the Fourier modulus |f̂ |, |D̂3,0f | and |D̂3,1f |.
From these graphs, we see that the scattering transform of
the smoothly deformed D3,0f is almost the same as that
of f . However, the scattering transform of the non-smoothly
deformed D3,1f changes a lot from that of f . A closer look at
the differences |S(D3,0f)− Sf | and |S(D3,1f)− Sf | shown
in Figure 7 confirms these observations.

D. Classifying Signal Deformation

Now we discuss ways to classify the deformations by
observing the scattering transform and the Fourier modulus
of each deformed signal.

First of all, whether the deformation is performed by the
smooth function or the non-smooth function can be determined
easily by comparing the scattering transform results S(Di,0f)
and S(Di,1f) for type i = 1, 2, 3 deformation, shown in

Fig. 6. Scattering differences |S(D2,0f) − Sf |, |S(D2,1f) − Sf | with
D2,0f , D2,1f deformed additively (c. f. Sections III-B and III-D)

Fig. 7. Scattering differences |S(D3,0f) − Sf |, |S(D3,1f) − Sf | with
D3,0f , D3,1f deformed multiplicatively (c. f. Sections III-C and III-D)

Figure 3, Figure 4, and Figure 5, respectively. Since the smooth
deformation modifies the original signal smoothly, the change
would occur at the front side of x-axis, which corresponds to
the low frequency content (if it occurs at all). On the other
hand, the way the non-smooth deformation modifies the signal
is less regular, resulting the change to spread out throughout
the whole x-axis.

Figure 6 depicts the scattering differences |S(D2,0f)−Sf |,
|S(D2,1f)−Sf | for additive deformation, and Figure 7 depicts
the scattering differences |S(D3,0f)− Sf |, |S(D3,1f)− Sf |
for multiplicative deformation. We are able to classify the
smooth deformation of additive type and multiplicative type by
comparing |S(D2,0f)−Sf | in Figure 6 with |S(D3,0f)−Sf |
in Figure 7. A large value exists at the front part of the graph



Fig. 8. Scattering differences |S(D1,0f)−Sf |, |S(D3,0f)−Sf | with the
smooth deformation, by the elastic translation and the multiplicative types

Fig. 9. Fourier modulus differences
∣∣∣|D̂1,0f | − |f̂ |

∣∣∣, ∣∣∣|D̂3,0f | − |f̂ |
∣∣∣ with

the smooth deformation, by the elastic translation and the multiplicative types

in |S(D2,0f)− Sf |, but not in |S(D3,0f)− Sf |.
Now let us think about how one can distinguish the

smooth deformation between the elastic translation type and
the multiplicative type. Comparing the scattering differences
|S(D1,0f)−Sf | (for the elastic translation) and |S(D3,0f)−
Sf | (for the multiplicative deformation) in Figure 8 does not
seem to give meaningful information in distinguishing the two.
In this case, we find that comparing the difference of Fourier
modulus is more informative. Fourier modulus differences∣∣∣|D̂1,0f | − |f̂ |

∣∣∣ (for the elastic translation) and
∣∣∣|D̂3,0f | − |f̂ |

∣∣∣
(for the multiplicative deformation) in Figure 9 are clearly
different. Therefore, in this case, by comparing the difference
of Fourier modulus, it is possible to classify the multiplicative
type and the elastic translation type.

IV. CONCLUSION

In this paper, we reviewed the scattering transform in
the univariate setting by presenting main ingredients toward
understanding its theory. We then studied the effect of the
scattering transform under various types of signal deformation,
and suggested some new ways to classify several deformations
through the scattering transform and the Fourier modulus.
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Journal de Mathématiques Pures et Appliquées, 67 (1988): 227-236.

[11] Tudor Barbu. Variational image denoising approach with diffusion
porous media flow, Abstract and Applied Analysis, 2013 (2013).


