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Abstract In this chapter we give an overview of a method recently developed for
designing wavelet filter banks via the Quillen-Suslin Theorem for Laurent polyno-
mials. In this method, the Quillen-Suslin Theorem is used to transform vectors with
Laurent polynomial entries to other vectors with Laurent polynomial entries so that
the matrix analysis tools that were not readily available for the vectors before the
transformation can now be employed. As a result, a powerful and general method for
designing non-redundant wavelet filter banks is obtained. In particular, the vanish-
ing moments of the resulting wavelet filter banks can be controlled in a very simple
way, which is especially advantageous compared to other existing methods for the
multi-dimensional cases.

1 Introduction

In this chapter we provide an overview of a recent method in [1] for designing non-
redundant wavelet filter banks using the Quillen-Suslin Theorem for Laurent poly-
nomials, which is a well-known result in Algebraic Geometry. The method works for
any dimension but it would be the most useful for multi-dimensional cases, where
the problem of designing wavelet filter banks can be quite challenging.

Wavelet representation [2], along with Fourier representation, has been one of
the most commonly used data representations. Constructing 1-dimensional (1-D)
wavelets is mostly well understood by now, but the situation is not the same for the
multi-dimensional (multi-D) case. Taking the tensor product of 1-D functions is the
most common approach, but the resulting separable wavelets have many unavoid-
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able limitations. In order to overcome these limitations, various non-tensor-based
approaches for constructing multi-D wavelets have been tried, but many of these
methods show limitations in various aspects as well. For example, some work only
for low spatial dimensions and cannot be easily extended to higher dimensions,
whereas others assume that the lowpass filters or refinable functions satisfy addi-
tional conditions such as the interpolatory condition (see, for example, [3, 4, 5, 6]
and references therein). Therefore, the problem of constructing multi-D wavelets is
still very challenging and calls for new ideas and insights.

Constructing wavelet filter banks is often reduced to solving an associated ma-
trix problem with Laurent polynomial entries. Once the associated matrix problem
is obtained, the wavelet filter bank design problem can be solved by using various
techniques for the matrices with Laurent polynomial entries that have been devel-
oped in many different branches of mathematics. The method we look at in this
chapter is based on a new way of applying the Quillen-Suslin Theorem for Laurent
polynomials to the matrix problem, and it presents some advantages over the ex-
isting (both the tensor product and non-tensor-based) methods of multi-D wavelet
construction: it works for any spatial dimension and for any dilation matrix, and it
works without any additional assumptions, such as interpolatory condition, on the
initial lowpass filters. Furthermore, it provides a simple algorithm for constructing
wavelets with a prescribed number of vanishing moments.

2 Wavelet Filter Bank Design via Laurent Polynomial Matrices

Filters f are (real-valued) functions defined on the integer grids Zn. A filter bank
(FB) consists of the analysis bank, which is a collection of, say p, filters used to
analyze a given signal, and the synthesis bank, which is another (possibly different
but with the same cardinality) collection of filters used to synthesize the analyzed
coefficients or their modifications, depending on the application at hand, in order to
get back to the original signal or its variant. We consider a special kind of FB, where
one filter from each band is lowpass (i.e. ∑k∈Zn f (k) =

√
q where q = |detΛ | with

dilation matrix Λ ), and all the other filters are highpass (i.e. ∑k∈Zn f (k) = 0), and
we refer to such a FB as the wavelet FB. Only the FBs with finite impulse response
filters and with the perfect reconstruction property will be considered, and in such a
case we necessarily have p≥ q.

2.1 Polyphase Representation and Wavelet FB Design

The connection between the wavelet FB design problem and the Laurent polyno-
mial matrix problem can be made via the polyphase decomposition [7]. Originally
introduced for computationally efficient implementation of various filtering opera-
tions, the polyphase decomposition provides a way to transform filters and signals
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to vectors with Laurent polynomial entries, to which we refer as the polyphase rep-
resentation. In particular, for an analysis filter h and a synthesis filter g, and for a
dilation matrix Λ , the polyphase representation are given as the following Laurent
polynomial vectors of length q = |detΛ | ≥ 2:

H(z) := [Hν0(z), . . . ,Hνq−1(z)],

G(z) := [Gν0(z), . . . ,Gνq−1(z)]
T ,

respectively, where T is used for the transpose, Hν(z) and Gν(z) for the z-transform
of the subfilters hν(k) := h(Λk− ν) and gν(k) := g(Λk + ν), respectively, and
{ν0 := 0, . . . ,νq−1} =: Γ for a complete set of coset representatives of Zn/ΛZn

containing 0.
In this setting, designing a FB is equivalent to finding a p× q analysis matrix

A(z) and a q× p synthesis matrix S(z) with S(z)A(z) = Iq. In this case, the FB is
non-redundant if p = q, that is, if A(z) and S(z) are square. It is a wavelet FB if
the first row of A(z) and the first column of S(z) are the polyphase representation
of lowpass filters and all other rows of A(z) and all other columns of S(z) are the
polyphase representation of highpass filters.

Understanding properties of a wavelet FB in terms of the polyphase representa-
tion is important. We recall that the filter f is lowpass (resp. highpass) if and only if
∑ν∈Γ Fν(1) =

√
q (resp. ∑ν∈Γ Fν(1) = 0), where 1 ∈ Rn is the vector of ones, and

the lowpass filter f has positive accuracy if and only if Fν(1) = 1/
√

q, for all ν ∈ Γ

(cf. [4]). For a filter f , the number of zeros of F(z)|z=eiω at ω ∈ Γ ∗\{0}, where
F(z) is the z-transform of the filter f , is referred to as the accuracy number [8]. It
is well known that the number of vanishing moments of each highpass filter in a
non-redundant wavelet FB is at least the minimum of the accuracy numbers of the
lowpass filters [9]. The number of vanishing moments is one of important criteria in
determining the approximation power of a wavelet system [10].

2.2 Quillen-Suslin Theorem and Wavelet FB Design

A row vector of length q with Laurent polynomial entries is called unimodular if
it has a right inverse, which is a column vector of length q. A unimodular column
vector is defined similarly.
Example 1. A row vector

H(z) = [
1
2
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is unimodular, because [2,0,0,0]T is a right inverse of H(z). In fact, there are in-
finitely many right inverses of H(z), and one of them is the column vector
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Clearly the former is simpler, but the latter may be preferred for a wavelet FB design
because the lowpass filter associated with it has larger accuracy number: it is 2,
whereas the one for the former is 0. ut

More generally, a matrix with Laurent polynomial entries is called a unimodular
matrix if its maximal minors generate 1. The Quillen-Suslin Theorem (also referred
to as the unimodular completion), originally conjectured by J. P. Serre [11] and
proved after about 20 years [12, 13], is a well-known result in Algebraic Geometry,
and it asserts that any unimodular matrix over a polynomial ring can be completed
to an invertible square matrix. This result, together with its generalization to Laurent
polynomial ring [14] and their constructive and algorithmic proofs [15, 16, 17], has
been used in various other disciplines including Signal Processing as well [18, 19].
The following special case of the unimodular completion over Laurent polynomial
rings is used for the wavelet FB design method we look at in this chapter.

Theorem 1 (Quillen-Suslin Theorem for Laurent polynomials [14]). Let D(z) be
a unimodular column vector of length q with Laurent polynomial entries. Then there
exists an invertible q× q matrix M(z) with Laurent polynomial entries such that
M(z)D(z) = [1,0, . . . ,0]T .

Although the above result can be useful in designing non-redundant wavelet FBs
(cf. [9]), there are still some important questions remained to be answered. For ex-
ample, obtaining a pair of lowpass filters with a prescribed number of accuracy is a
key step in such an approach, but this may not be straightforward to do so, especially
in multi-D cases, as we illustrate below for the 2-dimensional case.
Example 2. When n = 2, the lowpass filter associated with the linear box spline has
accuracy 2, and its polyphase representation is given as H(z) in (1) and thus, as we
saw in Example 1, it has a right inverse [2,0,0,0]T . But the lowpass filter associated
with [2,0,0,0]T has 0 accuracy and, as a result, it cannot be a lowpass filter for a
wavelet FB. Gröbner bases techniques ([20, 21, 22]) can be used to give the most
general form of the right inverse for H(z):

2
0
0
0

− 1
2

u1(z)


z−1

1 +1
−2
0
0

− 1
2

u2(z)


z−1

2 +1
0
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0
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2
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z−1

1 z−1
2 +1
0
0
−2


(implemented via the Maple package QuillenSuslin by Anna Fabiańska), where
u1(z),u2(z),u3(z) are any Laurent polynomials that are used as parameters. To find
a right inverse of H(z) with positive accuracy, one can choose specific Laurent poly-
nomials for parameters u1(z),u2(z),u3(z), which is usually done by fixing the to-
tal degree of Laurent polynomials and then increasing the total degree if needed
[23, 24, 25]. However, this approach may not be the best strategy, especially if one
looks for a right inverse for which the associated lowpass filter is supported in a
non-rectangular region. ut
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3 New Quillen-Suslin based Method for Designing Wavelet FBs

In this section we discuss the main ingredients of the theory and algorithms in the
new Quillen-Suslin Theorem based method for designing wavelet FBs presented in
[1], and start our discussion by pointing out some motivation for the theory.

3.1 Motivation for the theory

For any lowpass filters h and g used for analysis and synthesis, respectively, their
polyphase representation H(z) and G(z) satisfy the following simple matrix identity:

[
G(z) Iq

][ H(z)
Iq−G(z)H(z)

]
= Iq.

In fact, the above identity can be understood as a matrix-based interpretation of
Laplacian pyramid (LP) algorithms [26], which is widely used in Signal Processing
[27, 28, 29]. However, this matrix identity alone does not give a wavelet FB, because
the filters associated with the column vectors of the matrix Iq in the synthesis matrix[
G(z) Iq

]
are not highpass, even if the lowpass filters h and g are chosen to have

positive accuracy. If the lowpass filters have positive accuracy and they are biorthog-
onal, i.e. H(z)G(z) = 1, then another synthesis matrix

[
G(z) Iq−G(z)H(z)

]
is avail-

able, and its use leads to the construction of wavelet FBs, as studied in [30, 31].
Actually, the most general LP synthesis matrix is known and it is

SLP(z) :=
[
G(z)+F(z)(1−H(z)G(z)) Iq−F(z)H(z)

]
,

where F(z) is any column vector of length q [32].
Another approach to design wavelet FBs based on LP algorithms is studied in

[4] for the case including when the lowpass filter h satisfies the interpolatory con-
dition. A lowpass filter is interpolatory if the first component of its polyphase rep-
resentation is constant, and in such a case the constant is necessarily 1/

√
q, where

q = |detΛ | for the dilation matrix Λ (cf. [4]). Suppose that h is interpolatory with
positive accuracy. Since in this case, for any column vector G(z) of length q, the sec-

ond row of the analysis matrix ALP(z) :=
[

H(z)
Iq−G(z)H(z)

]
can be written in terms

of the rest rows of the matrix, we have the following identity 1 0√
q(1−H(z)G(z)) −√q H̃(z)

0 Iq−1

[1 0 0
0 0 Iq−1

]
ALP(z) = ALP(z),

which in turn gives

Iq = SLP(z)ALP(z)
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=

SLP(z)

 1 0√
q(1−H(z)G(z)) −√q H̃(z)

0 Iq−1

([1 0 0
0 0 Iq−1

]
ALP(z)

)

=

[
Gν0(z)+

√
q (1−H(z)G(z)) −√q H̃(z)
G̃(z) Iq−1

][ 1√
q H̃(z)

− 1√
q G̃(z) Iq−1− G̃(z)H̃(z)

]
=: SECLP(z)AECLP(z)

where H̃(z) (resp. G̃(z)) is a subvector of H(z) (resp. G(z)) obtained by removing the
first entry. Therefore, as long as the lowpass filter g associated with G(z) has positive
accuracy, we obtain a non-redundant wavelet FB whose analysis matrix is AECLP(z)
and the synthesis matrix is SECLP(z) (cf. [4] for more details). In particular, the first
column of SECLP(z), which is G(z)+ [

√
q,0, . . . ,0]T (1−H(z)G(z)), is the polyphase

representation of the synthesis lowpass filter.

3.2 Main ingredients of the theory

In the approach outlined above, the fact that the vector H(z) for the interpolatory
filter has a unit1 in the Laurent polynomial ring as one of its entry is used essentially,
and it is clear that this property does not hold true for the general lowpass filter.

Let H(z) be any polyphase representation for an analysis lowpass filter h with
positive accuracy (that is not necessarily interpolatory). Suppose that we want to
design a non-redundant wavelet FB for which its analysis lowpass filter is h. Then
H(z) is necessarily unimodular, because, being square matrices, the analysis matrix
times the synthesis matrix equals to Iq as well, hence reading off (1,1)-entry of both
sides in the identity guarantees the existence of a right inverse of H(z). Therefore
we assume that the polyphase representation H(z) we start with is unimodular. The
unimodularity of H(z) for the interpolatory h is trivial since [

√
q,0, · · · ,0]T is a right

inverse of H(z).
From the unimodularity of H(z), we see that there exists a column vector F(z)

of length q with Laurent polynomial entries such that H(z)F(z) = 1. Hence F(z)
is unimodular as well. By Theorem 1, there exists an invertible q× q matrix M(z)
such that M(z)F(z) = [1,0, . . . ,0]T . Then [M(z)]−1 is a q× q matrix with Laurent
polynomial entries, and H(z)[M(z)]−1 is a left inverse of M(z)F(z) = [1,0, . . . ,0]T ,
hence its first entry is 1, which is a unit. By letting the transformed row vector
HM(z) := H(z)[M(z)]−1 play the role of H(z) in the interpolatory case as described in
Section 3.1, for any column vector G(z) of length q, we get the following matrix
identity:

Iq =
[
GM(z)+FM(z)(1−HM(z)GM(z)) Iq−FM(z)HM(z)

][ HM(z)
Iq−GM(z)HM(z)

]
, (2)

1 An element in a ring is called a unit if its multiplicative inverse lies in the ring.
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where FM(z) := M(z)F(z) and GM(z) := M(z)G(z). The transformed polyphase repre-
sentation used here can be thought of a generalization of the valid polyphase repre-
sentation studied in [33].

Following the previous discussions when H(z) is interpolatory, because the sec-
ond row of the transformed analysis matrix (the second matrix in the right-hand side
of (2)) can be written in terms of the rest rows of the matrix, by inserting 1 0

(1−HM(z)GM(z)) − H̃M(z)
0 Iq−1

[1 0 0
0 0 Iq−1

]

between the two matrices in the right-hand side of (2), we obtain the matrix identity

Iq =

[
GM

ν0
(z)+(1−HM(z)GM(z)) −H̃M(z)

G̃M(z) Iq−1

][
1 H̃M(z)

−G̃M(z) Iq−1− G̃M(z)H̃M(z)

]
=: SMECLP(z)A

M
ECLP(z),

hence we get a non-redundant wavelet FB with the analysis matrix AMECLP(z)M(z) and
the synthesis matrix [M(z)]−1SMECLP(z), provided that the lowpass filter g associated
with G(z) has positive accuracy. More precisely, in this wavelet FB, the polyphase
representation for the synthesis lowpass filter is

[M(z)]−1 (GM(z)+ [1,0, . . . ,0]T (1−HM(z)GM(z))
)
= G(z)+F(z)(1−H(z)G(z)),

for the synthesis highpass filters are the 2nd through the last column vectors of
[Iq−F(z)H(z)][M(z)]−1, and for the analysis highpass filters are the 2nd through the
last row vectors of M(z)[Iq−G(z)H(z)].
Remark 1. Although the case when M(z) satisfies M(z)F(z) = [1,0, . . . ,0]T is dis-
cussed above, all we need to run the above argument is for M(z)F(z) to be a unimod-
ular column vector with a unit in at least one of its components.
Remark 2. Unlike the classical approach in searching for a right inverse of H(z) for
a non-redundant wavelet FB design (cf. Example 2), in the above approach, we do
not need to look for a single right inverse of H(z) that has positive accuracy. Rather,
one needs a pair of column vectors F(z) and G(z) such that F(z) is any right inverse
of H(z) (with possibly no accuracy) and that G(z) has positive accuracy (but needs
not be a right inverse of H(z)), which is much easier to find.

3.3 Main ingredients of the algorithms

The theory in the previous subsection provides an immediate algorithm for design-
ing non-redundant wavelet FBs.

Algorithm 1: For a non-redundant wavelet FB from a lowpass filter.
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Input: H(z): unimodular polyphase representation of an analysis lowpass filter h
with positive accuracy.

Output: D(z): polyphase representation of a synthesis lowpass filter,
Output: J1(z), . . . ,Jq−1(z): polyphase representation of analysis highpass filters,
Output: K1(z), . . . ,Kq−1(z): polyphase representation of synthesis highpass filters,
Output: such that, together with H(z), they form a non-redundant wavelet FB.

Step 1: Choose a lowpass filter g with positive accuracy, and let G(z) (as a column
vector) be its polyphase representation.

Step 2: Choose a right inverse F(z) of H(z).
Step 3: Set D(z) := G(z)+F(z)(1−H(z)G(z)).
Step 4: Choose an invertible q×q matrix M(z) such that M(z)F(z) = [1,0, · · · ,0]T .
Step 5: Set J1(z), . . . ,Jq−1(z) := 2nd through last rows of M(z)[Iq−G(z)H(z)].
Step 6: Set K1(z), . . . ,Kq−1(z) := 2nd through last columns of [Iq−F(z)H(z)][M(z)]−1.

Given an analysis lowpass filter h, if one is interested in getting a synthesis low-
pass filter d with positive accuracy, one can stop the algorithm after Step 3 and
use D(z) there as its polyphase representation. In fact, it can be shown that the ac-
curacy of the lowpass filter d is at least min{αh,αg,α f +βh,α f +βg}, where f is
the lowpass filter having F(z) as its polyphase representation, and αx and βx are the
accuracy number and the flatness number of a lowpass filter x, respectively (see [1]
for details including the definition of the flatness number of a lowpass filter).

In general α f can be zero, and βh, βg can be as small as 1 (they have to be
positive because h and g are lowpass filters) even if h and g have large accuracy,
hence as a result, the accuracy of d can be much smaller than αh. This situation can
be improved by choosing g with large accuracy, and iterating a part of Algorithm 1
as shown in the next algorithm. Recalling the close relation between the number
of vanishing moments and the accuracy numbers of the lowpass filters for a non-
redundant wavelet FB (cf. Section 2.1), the next algorithm provides a way to design
wavelet FBs with large vanishing moments from a lowpass filter with large accuracy.

Algorithm 2: For a non-redundant wavelet FB with ≥ αh vanishing moments.

Input: H(z): unimodular polyphase representation of an analysis lowpass filter h
with accuracy αh.

Output: D(z): polyphase representation of a synthesis lowpass filter,
Output: J1(z), . . . ,Jq−1(z): polyphase representation of analysis highpass filters,
Output: K1(z), . . . ,Kq−1(z): polyphase representation of synthesis highpass filters,
Output: such that, together with H(z), they form a non-redundant wavelet FB with

highpass filters having at least αh vanishing moments.

Step 1: Set Ite := 1.
Step 2: Choose a lowpass filter g with at least αh accuracy, and let G(z) (as a col-

umn vector) be its polyphase representation.
Step 3: Choose a right inverse F(z) of H(z).
Step 4: Set D(z) := G(z)+F(z)(1−H(z)G(z)).
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Step 5: If α f +(Ite)βh ≥ αh and α f +(Ite)βg ≥ αh, then go to Step 6. Otherwise,
let Ite := Ite+1 and F(z) := D(z), and go to Step 4.

Step 6: Choose an invertible q×q matrix M(z) such that M(z)F(z) = [1,0, · · · ,0]T .
Step 7: Set J1(z), . . . ,Jq−1(z) := 2nd through last rows of M(z)[Iq−G(z)H(z)].
Step 8: Set K1(z), . . . ,Kq−1(z) := 2nd through last columns of [Iq−F(z)H(z)][M(z)]−1.

Because βh and βg are positive, each time the algorithm goes back to Step 4
from Step 5, α f + (Ite)βh and α f + (Ite)βg strictly increase and they eventually
satisfy the conditions α f +(Ite)βh ≥ αh and α f +(Ite)βg ≥ αh, even if they did not
initially. Therefore, by the time the algorithm reaches to Step 6, min{αh,αg,α f +
βh,α f + βg} = αh, and the accuracy number of the lowpass filter associated with
D(z) is at least αh.

In both algorithms, G(z), F(z), and M(z) need to be chosen. One can always choose
H(z−1)T as G(z). F(z) is nothing but the first column of [M(z)]−1, and F(z) and M(z)
can be found by using Mathematical softwares such as Maple package QuillenSuslin
mentioned earlier.

4 Conclusion

We presented some important ingredients of a recent method in [1] for designing
non-redundant wavelet FBs, as well as some essential background material for the
method including the Quillen-Suslin Theorem. The main advantage of this method
compared to other existing wavelet FB design methods is the existence of a simple
algorithm for designing a non-redundant wavelet FB with a prescribed number of
vanishing moments.
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