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A wavelet-based distribution-free tabular CUSUM chart based on adaptive thresholding, WDFTCa is designed for
rapidly detecting shifts in the mean of a high-dimensional profile whose noise components have a continuous non-
singular multivariate distribution. First computing a discrete wavelet transform of the noise vectors for randomly
sampled Phase I (in-control) profiles, WDFTCa uses a matrix-regularization method to estimate the covariance ma-
trix of the wavelet-transformed noise vectors; then those vectors are aggregated (batched) so that the nonoverlapping
batch means of the wavelet-transformed noise vectors have manageable covariances. Lower and upper in-control
thresholds are computed for the resulting batch means of the wavelet-transformed noise vectors using the associ-
ated marginal Cornish-Fisher expansions that have been suitably adjusted for between-component correlations. From
the thresholded batch means of the wavelet-transformed noise vectors, Hotelling’s T 2-type statistics are computed
to set the parameters of a CUSUM procedure. To monitor shifts in the mean profile during Phase II (regular) op-
eration, WDFTCa computes a similar Hotelling’s T 2-type statistic from successive thresholded batch means of the
wavelet-transformed noise vectors using the in-control thresholds; then WDFTCa applies the CUSUM procedure
to the resulting T 2-type statistics. Experimentation with several normal and nonnormal test processes revealed that
WDFTCa outperformed existing nonadaptive profile-monitoring schemes.
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1. Introduction

With the rapid development of sensor technology, we can collect massive process and product data to
monitor, control, and improve process performance and product quality. Massive data may lead to a data
overabundance. For an example, Jin and Shi (1999) study a tonnage signal from an automotive stamping
process, where a press can typically perform 200 strokes per minute with more than 6000 data points in
each stroke, i.e., 1.2 million data points per minute. Staudhammer, Maness, and Kozak (2007) use laser
range sensors (LRSs) to measure the thickness of sawed boards from a lumber manufacturing process, and
each LRS provides more than 2000 data points for each sawed board.

These series of data points for each stroke or sawed board are called profiles. A profile describes the
functional relationship between a response variable and one or more explanatory variables (Woodall 2007).
In this paper, we restrict attention to one explanatory variable, the same setting used in Jeong, Lu, and Wang
(2006), Chicken, Pignatiello Jr., and Simpson (2009) and Lee et al. (2012). The functional relationship
sometimes has a linear or nonlinear representation, but it also can be too complicated to have a well-known
functional form. Examples, including tonnage signals or LRS data, often have jumps, cusps, oscillations,
and other types of non-smooth behavior.
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Monitoring linear profiles, such as some calibration processes, widely employ linear regression mod-
els. In order to detect a shift in the mean of successive observed profiles, control charts are applied to
regression parameters, such as estimated intercepts and slopes. For simple linear profiles, Kang and Albin
(2000) perform a single control chart on a multivariate T 2-statistic constructed on estimated intercepts and
slopes. For polynomial linear profiles and general linear profiles, Zou, Tsung, and Wang (2007) monitor
all estimated regression parameters within a single chart using multivariate exponentially weighted moving
average (EWMA) schemes.

Nonlinear profiles, such as product shapes and consecutive measurements of the same variable at different
locations on individual products, are often modeled by nonlinear regression models; and a control chart is
performed on estimated regression parameters from the observed profiles. Williams, Woodall, and Birch
(2007) use a Hotelling’s T 2-chart to monitor parameters of a nonlinear regression model for a particle board
manufacturing process. To detect several complex sawing defects in lumber manufacturing, Staudhammer,
Maness, and Kozak (2007) model LRS profiles with a combination of two regression models, multiple
linear and nonlinear, to describe roughness and waviness of surfaces, respectively; and then they monitor
regression parameters from different models with separate multiple profile charts.

Even though Gupta, Montgomery, and Woodall (2006) point out that the use of control charts based on
estimated regression parameters is effective in terms of average run length performance, there are some
issues in using regression models for profile monitoring. First, regression methods tend to use smooth
models to estimate in-control mean profiles; thus we lose some important local information, such as jumps
and cusps. Secondly, the performance of control charts highly depends on the choice of models. If an
inappropriate model is selected, then we may get misleading results and not detect shifts in the mean
profile adequately. For example, Chicken, Pignatiello Jr., and Simpson (2009) show that when a change
occurs in the mean profile, the selected regression model possibly still yields the same parameter estimates
so that the shift is undetectable. In addition, fitting a sufficiently accurate regression model to observed
profiles can be time-consuming. Lastly, some process profiles, such as tonnage signals and LRS data, can
be too complex to be modeled adequately by parametric regression models.

As a consequence, some profile monitoring charts have been based on nonparametric regression tech-
niques, such as smoothing splines, functional principal components analysis (FPCA), Fourier analysis, and
wavelet analysis. Gardner et al. (1997) use a smoothing spline to model the thickness at selected locations of
a wafer surface in a semiconductor manufacturing process. Ramsay and Silverman (1997) propose methods
based on FPCA that can be used in nonparametric profile monitoring. Chen and Nembhard (2011) com-
pute the Fast Fourier Transform (FFT) of profiles and construct an adaptive Neyman test statistic from the
corresponding Fourier coefficients. However, splines, FPCA, and Fourier transforms cannot model locally
sharp changes well—for example, see Ganesan et al. (2003), Jeong, Lu, and Wang (2006) and Chicken,
Pignatiello Jr., and Simpson (2009). Instead, the discrete wavelet transform (DWT) has been suggested
and shown to be effective for detecting and diagnosing process faults (Fan 1996; Jin and Shi 2001). Some
advantages of using DWTs for profile monitoring are summarized as follows.

• Sparsity: the DWT can use substantially fewer wavelet basis functions to achieve a comparably ac-
curate approximation for profiles, especially non-smooth profiles.
• Localization: the DWT is localized in both the frequency and time domains, that is, a frequency

change causes changes only in certain time segments. By contrast, the Fourier transform is localized
only in the frequency domain, which means a frequency change can cause changes everywhere in
the time domain. Therefore the DWT can preserve locally sharp changes in profiles well and help
diagnose process faults.
• Fast computation: For a profile of dimension n, the computational complexity of the profile’s DWT

is O(n) (Mallat 1989); and this is smaller than the complexity O(n log2 n) of the profile’s FFT.

Therefore wavelet-based approaches have gained popularity, especially for monitoring high-dimensional
profiles with non-smooth behaviors. The DWT is usually used as either a denoising method or a dimension-
reduction method in nonparametric profile monitoring. Jin and Shi (2001) and Jeong, Lu, and Wang (2006)
use a DWT to denoise observed profiles via universal thresholds and then monitor the preserved compo-
nents with control charts. The number and locations of preserved components change from profile to profile;

2



therefore monitored wavelet components are selected adaptively. Their wavelet-based control charts with
adaptive selection detect shifts effectively, but those control charts require assumptions of marginal normal-
ity and sometimes independence among components. Without the normality assumption, it is challenging
to obtain distributions of monitored statistics and construct analytical control limits for control charts.

On the other hand, Jin and Shi (1999), Lada, Lu, and Wilson (2002), and Lee et al. (2012) employ the
DWT as a dimension-reduction technique. Based on engineering knowledge of the automotive stamping op-
eration that different process failures correspond to changes in different segments of the tonnage signal from
the stamping process, Jin and Shi (1999) construct different thresholds for different profile segments. Then
they monitor a fixed selection of wavelet components according to the determined thresholds, and detect
process faults in the tonnage signals. Lada, Lu, and Wilson (2002) reduce profile dimensions by minimiz-
ing the weighted relative reconstruction error (WRRE), in order to balance model parsimony against data
reconstruction error. Lee et al. (2012) apply WRRE to an in-control mean profile to determine locations of
wavelet components whose values need to be monitored. A reduced-dimension DWT vector of a profile is
formed by keeping wavelet components from the determined locations only; and then a distribution-free
CUSUM chart is applied to Hotelling’s T 2-type statistics computed from the reduced-dimension DWT vec-
tors. Since both control charts in Jin and Shi (1999) and Lee et al. (2012) select wavelet components from
the same locations in each profile’s DWT, the selection method for wavelet components is considered to be
static or nonadaptive. Even though some wavelet-based control charts with static selection (specifically Lee
et al. (2012)) are distribution-free, they are insensitive to some shifts or even fail to detect some shifts—for
instance, a shift only affecting the unselected wavelet components. Extending static selection to dynamic
(adaptive) selection is not trivial. Because the selected components change from profile to profile and the
number of selected components is affected by the correlations between profile components, monitoring
statistics tend to have a large variance; and the distribution of monitored statistics can be quite complicated.

In this article we formulate and evaluate WDFTCa, a wavelet-based distribution-free CUSUM chart with
adaptive selection that dynamically adjusts the number and locations of preserved components for each
monitored DWT vector. In brief WDFTCa consists of the following steps. First computing a DWT of the
noise vectors for randomly sampled Phase I (in-control) profiles, WDFTCa uses a matrix-regularization
method to estimate the covariance matrix of the wavelet-transformed noise vectors; then those vectors
are aggregated (batched) so that the nonoverlapping batch means of the wavelet-transformed noise vec-
tors have manageable covariances. Lower and upper in-control thresholds are computed for the resulting
batch means of the wavelet-transformed noise vectors using the associated marginal Cornish-Fisher expan-
sions that have been suitably adjusted for correlations between the components of those vectors. From the
thresholded batch means of the wavelet-transformed noise vectors, Hotelling’s T 2-type statistics are com-
puted to set the parameters of a CUSUM procedure. To monitor shifts in the mean profile during Phase II
(regular) operation, WDFTCa computes a similar Hotelling’s T 2-type statistic from successive thresholded
batch means of the wavelet-transformed noise vectors using the upper and lower in-control thresholds;
then WDFTCa applies the CUSUM procedure to the resulting T 2-type statistics for rapid detection of an
out-of-control condition.

Ideally, in Phase I (in-control) operation WDFTCa will retain relatively few detail coefficients; on the
other hand, when the observed profiles are out-of-control, WDFTCa’s estimators of both the scaling and
detail coefficients will exhibit significant shifts from their in-control counterparts. Thus we can rapidly
detect such shifts by monitoring changes in T 2-type statistics computed from the selected components. In
this paper, we extend the wavelet-based control chart with static selection of Lee et al. (2012) to formulate
new control charts with adaptive selection. Experimental results show the new control charts can detect
various shifts more effectively than the method of Lee et al. (2012) under a general noise distribution.

The paper is organized as follows. Section 2 briefly defines the problem and notation, provides motivat-
ing examples, and introduces the DWT. In Section 3, we describe the new profile-monitoring procedure
WDFTCa, and we discuss distribution-free thresholding methods and covariance matrix estimation. Sec-
tion 4 presents experimental results for WDFTCa and its competitors, followed by conclusions in Section
5.
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2. Background

In this section, we first define our problem and provide notation; then we discuss a motivating example and
present a brief overview of DWT.

2.1 Notation and Problem

For j = 1,2, . . . , we consider the jth observed profile Y j = (Yj,1, . . . ,Yj,n)
T as an n-dimensional random

vector; and for i = 1, . . . ,n, the ith component Yj,i of that profile is the response associated with the ith
prespecified level xi of the designated explanatory variable so that we have the functional relationship

Yj,i = f (xi)+ ε j,i for i = 1, . . . ,n and j = 1,2, . . . , (1)

where ε j,i is the error (noise) in the ith component of the jth profile. (Throughout this article, we let AT de-
note the transpose of a vector or matrix A.) If we let x = (x1, . . . ,xn)

T denote the n×1 vector of preselected
levels of the explanatory variable that are used with each profile, and if we let ε j = (ε j,1, . . . ,ε j,n)

T denote
the corresponding n×1 vector of noise terms for the jth profile, then the functional relationship (1) may be
compactly expressed as Y j = f(x)+ε j for j = 1,2, . . . , where f(x)≡ [ f (x1), . . . , f (xn)]

T . We assume that
E[ε j] = 0 and that the covariance matrix Cov[ε j] = E[ε jε

T
j ] = Σ0. In general the components of ε j may be

non-normal and correlated. With this setup, the jth profile Y j has mean vector E[Y j] = f(x) and covariance
matrix Σ0. In addition, the marginal variance of Yj,i or ε j,i is denoted by σ2

i = [Σ0]ii.
We assume that when f(·) is the in-control function f0(·), i.e., E[Y j] = f0(x), the monitored process is

in control and Y j is an in-control profile. When f(·) is some out-of-control function f1(·), i.e., E[Y j] =
f1(x) , f0(x), the monitored process is out of control and Y j is an out-of-control profile. Our problem is to
detect rapidly the onset of an out-of-control condition.

To simplify notation, we let f0 ≡ f0(x) and f1 ≡ f1(x) , f0, where f0 = [ f0,1, . . . , f0,n]
T and f1 =

[ f1,1, . . . , f1,n]
T . Without loss of generality, we assume f0 is centered, i.e., ∑

n
i=1 f0,i = 0. The profile dimen-

sion is set to n = 2J for some positive integer J. Let L∈ {0, . . . ,J−1} denote the coarsest level of resolution
in a given DWT system (see Section 2.3) and W denote the associated DWT matrix for the given DWT sys-
tem with the selected L. We apply the DWT to f0, Y j and ε j for j = 1,2, . . ., obtaining the corresponding
DWTs θ0 = W f0 = (θ0,1, . . . ,θ0,n)

T , d j = WY j = (d j,1, . . . ,d j,n)
T , and ω j = Wε j = (ω j,1, . . . ,ω j,n)

T , re-
spectively. The first 2L components in θ0, d j and ω j are scaling coefficients and contain important features
of the original vectors at the lower levels of resolution. The remaining n−2L components are called detail
coefficients. The covariance matrix of d j or ω j is Λ0 = WΣ0WT . All notation is summarized below.

f0 The n×1 in-control mean profile;
Y j The jth n×1 observed profile, for j = 1, . . .;
ε j =Y j− f0, the n×1 noise vector of the jth observed profile Y j;
θ0 =W f0, the n×1 DWT of the in-control mean profile;
d j =WY j, the n×1 DWT of the jth observed profile Y j;
ω j =Wε j = d j−θ0, the n×1 DWT of the noise vector of the jth observed profile Y j;
ωk(r) =r−1

∑
r
u=1ω(k−1)r+u, the DWT of the kth non-overlapping batch mean of noise vectors with batch

size r;
λL ={λ L

1 , . . . ,λ
L
n }, an n×1 lower threshold vector;

λU ={λU
1 , . . . ,λU

n }, an n×1 upper threshold vector;
ω∗k (r) ={ω∗k,1(r), . . . ,ω∗k,n(r)}, the thresholded DWT of the kth non-overlapping batch mean of noise

vectors, i.e., applying λL and λU on ωk(r), where ω∗k,i(r) = ωk,i(r)(1−1
λ L

i <ωk,i(r)<λU
i
) and 1 is

an indicator function;
ωN =N−1

∑
N
j=1ω j, the sample mean of ω1, . . . ,ωN , where N is the size of a data set;

Λ̂0 =(N−1)−1
∑

N
j=1(ω j−ωN)(ω j−ωN)

T ,n×n sample covariance matrix of noise vectors;

Λ̃0 The regularizated version of Λ̂0, see discussion in Section 3.3;
Λ̃0(r) =Λ̃0/r.

4



In this paper, we define the in-control average run length, ARL0, as the average number of in-control
profiles that are observed before a (false) out-of-control alarm is raised; similarly the out-of-control average
run length, ARL1, is the average number of out-of-control profiles that are observed before a (true) out-of-
control alarm is raised. We compare and analyze different control charts in terms of ARL0 and ARL1.

2.2 Motivation

In this subsection, we show that a wavelet-based monitoring chart with static selection can miss certain
shifts, which in turn demonstrates the need for new charts with adaptive selection. More specifically, we
examine the performance of WDFTCs from Lee et al. (2012), which is a distribution-free tabular CUSUM
chart on T 2-type statistics constructed from preselected locations of wavelet components. Recall that prese-
lected locations are fixed for all profiles regardless of shift types. A brief description of Procedure WDFTCs
is provided in the Appendix; also see Figure 2 in Lee et al. (2012) for more details.

In our preliminary experiments, we use Mallat’s piecewise smooth function as f0 with n = 512 equis-
paced data points, as depicted in Figure 1. This function exhibits some problematic characteristics, such
as cusps and jumps, which are often seen in manufacturing profiles. The noise components are assumed to
follow independent and identically distributed (IID) standard normal distributions. We consider two types
of shifts, namely the wavelet global (WG) shift and the wavelet local (WL) shift, with different values of
the shift size η ; and thus the out-of-control mean profile is f1 = f0+ηζ, where ζ denotes the shift type and
η ∈ {0.25,0.5,0.75,1,2}. These two types of shifts only affect unselected DWT components in WDFTCs
and are shown in Figure 2. More details of WG and WL are in Section 4.1.1. The target ARL0 is set to 200.

Table 1 shows ARL1 of WDFTCs with different values of the shift size η . The performance of ARL1
implies that WDFTCs fails to detect both types of shifts (WG and WL), even for a large shift size, such
as η = 2. This is not surprising, because the WG and WL shifts do not affect the statistical properties of
the preselected wavelet components; and thus constructed T 2-type statistics in WDFTCs have the same
statistical properties (i.e., the mean and variance of the relevant T 2-type statistics do not change from in-
control profiles to out-of-control profiles). Other existing wavelet-based control charts with a preselected
subset of wavelet components also exhibit similar limitations. To overcome this problem, we consider
DWTs of noise vectors of profiles and determine adaptively the locations of preserved wavelet components
in the noise DWT vectors. More specifically, for each DWT of a noise vector, we preserve all scaling
coefficients and a number of detail coefficients whose values turn out to be outliers. Therefore locations of
preserved wavelet components can be different for each observed profile and can be affected by any type
of shift.

-20

-10

 0

 10

 20

 30

 40

 50

 0  100  200  300  400  500

Mallat

Figure 1. Mallat’s piecewise smooth function.
Table 1. ARL1 delivered by WDFTCs for wavelet global shift and wavelet local shift.

Wavelet global shift (WG) Wavelet local shift (WL)
η 0.25 0.5 0.75 1 2 0.25 0.5 0.75 1 2

ARL1 202.72 195.54 198.19 203.19 189.25 212.47 206.64 202.42 201.03 202.22

To emphasize the need for a new chart, extreme shifts are considered in this section. Comparisons be-
tween WDFTCs and the proposed new chart on more realistic shifts are discussed in Section 4.
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Figure 2. Wavelet global shift function (left) and wavelet local shift function (right).

2.3 Discrete Wavelet Transform

The wavelet transform is analogous to the Fourier transform, but it employs scaling and wavelet basis
functions instead of the sine and cosine basis functions used in the Fourier transform. Let L 2[0,1] denote
the space of real-valued square-integrable functions defined on the unit interval [0,1]. The wavelet transform
of a function g ∈L 2[0,1] represents g as an infinite series involving orthonormal scaling or wavelet basis
functions. A scaling function φ ∈ L 2[0,1] has an associated wavelet function ψ ∈ L 2[0,1]; and from
φ or ψ , we can derive an orthonormal set of basis functions for L 2[0,1] similar to the trigonometric
functions used in the Fourier series representation. Assuming that φ and ψ are based on the Haar wavelet
for simplicity, we explain the mechanism of the wavelet transform.

The wavelet representation of a function g ∈L 2[0,1] is given by

g(z) = lim
B→∞

B−1

∑
`=−∞

d2`e−1

∑
m=0
〈g,ψ`,m〉ψ`,m(z) = lim

B→∞

2B−1

∑
m=0
〈g,φB,m〉φB,m(z) (2)

for almost all z ∈ [0,1], where: h`,m(z) = 2`/2h(2`z−m) for h = ψ,φ ; and 〈g1,g2〉 =
∫ 1

0 g1(z)g2(z)dz is
defined as the inner product operator for g1,g2 ∈L 2[0,1].

Let PB(g) represent the Bth partial sum on the far right-hand side of Equation (2). It is clear that the quan-
tity PB(g) becomes more accurate as B increases, and it provides an approximation to g for a finite B. The
scaling coefficients of g are defined as the quantities {C`,m = 〈g,φ`,m〉}, which represent the low-frequency
components or the smooth parts of g(z). The detail coefficients of g are the quantities {D`,m = 〈g,ψ`,m〉};
and they represent the high-frequency components or local behaviors of g(z). Due to the discrete nature
of measurements from a physical device, suppose that we take g≈ PJ(g) for some finest (highest) level of
resolution J; and we stop the successive function-approximation operations at some coarsest (lowest) level
of resolution L, where L < J. Then we obtain an approximate representation of g based on its DWT,

g(z)≈
2J−1

∑
m=0

CJ,mφJ,m(z) =
2L−1

∑
m=0

CL,mφL,m(z)+
J−1

∑
`=L

2`−1

∑
m=0

D`,mψ`,m(z) (3)

for almost all z ∈ [0,1].
The DWT can also be presented in terms of matrices, and we use the matrix representation throughout the

paper. Let W denote an n×n orthogonal matrix associated with the selected functions φ(t) and ψ(t), where
n has the form n = 2J for some positive integer J. For any n×1 vector Y, the matrix-vector multiplication
d =WY yields the corresponding DWT of Y. Let L∈ {0,1, . . . ,J−1} denote the coarsest level of resolution
in the given wavelet system. Thus the first 2L components of d are scaling coefficients, and all remaining
components are detail coefficients.
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3. New Procedure

In this section, we introduce a new chart that monitors statistics constructed from adaptively thresholded
DWT vectors. We first present our proposed procedure WDFTCa, and then discuss different adaptive thresh-
olding methods and covariance matrix estimation.

3.1 Procedure WDFTCa

WDFTCa first applies DWT to each observed profile, thresholds components of DWT vectors adaptively,
and then constructs T 2-type statistics from thresholded DWT vectors. In order to maintain the power of
control charts (Fan (1996)), a desirable thresholding method selects a small number of components (e.g.,
mainly scaling coefficients) when in-control, so that monitored statistics have manageable variability and
can be approximated as a Brownian motion process properly. On the other hand, the thresholding method
should select more components (e.g., including some extreme outliers of detail coefficients) when out-
of-control, so that monitored statistics have significant changes and can quickly detect shifts in the mean
profile. Additionally, scaling coefficients contain prominent information of a profile due to the nature of
wavelet transform, while extreme outliers in DWT vectors vary for different observed profiles and thus
should be selected adaptively.

Combining with an adaptive thresholding method, WDFTCa becomes more sensitive to detect a wide
range of shift types than existing wavelet-based control charts with static selection. The detailed steps in
WDFTCa are described as below.

Procedure WDFTCa
Phase I — Obtain vectors d j = Y j− f0, from observed profiles {Y j : j = 1, . . . ,N} where N is the size of Phase I
data set. Calculate DWTs ω j = Wd j, and then perform the following steps:

1. Compute sample covariance matrix Λ̂0 from {ω j : j = 1, . . . ,N}, see Notation. Apply Algorithm CMR as
follow to regularize Λ̂0 and obtain Λ̃0. Next determine the batch size r by Algorithm BSD as follow and
let Λ̃0(r) = Λ̃0/r. For k = 1,2, . . . ,bN/rc, compute the kth non-overlapping batch mean vector ωk(r) =
r−1

∑
r
u=1ω(k−1)r+u.

2. Determine the lower and upper threshold vectors λL and λU as Section 3.2.
3. Threshold ωk(r) with λL and λU ; and obtain ω∗k (r), see Notation. Compute the Hotelling’s T 2-type statistics

T 2
k (r) =

(
ω∗k (r)

)T(
Λ̃0(r)

)−1(
ω∗k (r)

)
(4)

4. Calculate sample mean µ̂T 2(r) and sample variance σ̂2
T 2(r) from {T 2

k (r) : k = 1,2, . . . ,bN/rc}. Solve a root
H from Equation (5) with K = 0.1σ̂T 2(r) and prespecified ARL0.

σ̂2
T 2(r)

2K2

(
exp
{2K[H +1.166σ̂T 2(r)]

σ̂2
T 2(r)

}
−1−

{2K[H +1.166σ̂T 2(r)]

σ̂2
T 2(r)

})
=

2ARL0

r
, (5)

Phase II — Obtain DWTsω j =W(Y j− f0) from new observed profiles Y j, j = 1,2, . . ., and non-overlapping batch
mean vector ωk(r) = r−1

∑
r
u=1ω(k−1)r+u, k = 1,2, . . ..

5. Threshold ωk(r) with λL and λU ; and obtain thresholded DWTs ω∗k (r). Calculate the associated statistic
T 2

k (r) from (4).
6. Raise an alarm for ωk(r) if S+(k)≥ H or S−(k)≥ H, where

S±(k) =

{
0, for k = 0,
max

{
0,S±(k−1)± (T 2

k (r)− µ̂T 2(r))−K
}
, for k = 1,2, . . . . (6)

Remark 1: In some applications, the in-control mean profile f0 may not be known. As an alternative, we
use sample mean of Phase I data f̂ 0 = ∑

N
j=1 Y j/N as an estimator of f0. Correspondingly, θ0 is replaced

with θ̂0 = W f̂ 0.
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Remark 2: Lee et al. (2012) show batching reduces covariances and improves the ARL1 performance of
control charts.

WDFTCa and WDFTCs have quite different mechanisms. WDFTCs analyzes the DWT of the in-control
mean profile and only monitors a subset of DWT components, while WDFTCa watches nonzero com-
ponents from thresholded DWTs, whose locations vary for different observed profiles. More specifically,
WDFTCs constructs T 2-type statistics by p×1 reduced-dimension DWTs of profiles and the corresponding
p× p covariance matrix. On the other hand, WDFTCa constructs T 2-type statistics by n× 1 thresholded
DWTs of profiles and the n× n covariance matrix, but the number of nonzero components of thresholded
DWTs is far smaller than n when in-control, so matrix multiplications to calculate monitored statistics can
be accelerated by exploring sparsity of thresholded DWTs.

Algorithm CMR

1. Divide the Phase I data set into two disjoint subsets S1 and S2 with size N1 = bN(1− logN)/ logNc and
N2 = N−N1, respectively.

2. Calculate the sample covariance matrices Λ̂#
S1

and Λ̂#
S2

.
3. Compute the estimated threshold,

τ̂ = argmin
τ̂≥0

∑
(µ,ν) and

(2L<µ or 2L<ν)

{
[Λ̂#

S1
]
µ,ν 1[|[Λ̂#

S1
]
µ,ν | ≥ τ̂ ]− [Λ̂#

S2
]
µ,ν

}2
. (7)

4. Calculate the sample covariance matrix Λ̂#
0 using the entire Phase I data set of size N and apply the threshold

τ̂ from (7) to Λ̂#
0 and obtain the regularized sample covariance matrix Λ̃#

0 as below.

Λ̃#
0 =

{
[Λ̂#

0]µ,ν , if (i) µ , ν or (ii) µ ≤ 2L and ν ≤ 2L,

[Λ̂#
0]µ,ν 1

(
| [Λ̂#

0]µ,ν | ≥ τ̂

)
, otherwise,

where 1(·) is the indicator function.

Algorithm BSD

1. Obtain τ̂ and the regularized sample covariance matrix Λ̃#
0 from Algorithm CMR. Set a subset O = {(µ,ν) :

µ , ν ,2L < µ ≤ n, and 2L < ν ≤ n} containing all off-diagonal elements of Λ̃#
0 but excluding the estimated

covariances between pairs of scaling coefficients.
2. Let Q denote the number of nonzero elements in O .

Q = ∑
(µ,ν)∈O

1(|[Λ̃#
0]µ,ν |> 0) .

2a. If Q = 0, then set r = 1 and stop. Otherwise, go to step [2b].
2b. Calculate the average magnitude ζ of nonzero elements in O . Then set the batch size r = d

√
2ζ/τ̂ e

and stop.
ζ = ∑

(µ,ν)∈O
|[Λ̃#

0]µ,ν |/Q.

3.2 Thresholding Methods

Many researchers have developed wavelet thresholding methods with Gaussian noise as a canonical model.
For example, minimax thresholding method and universal thresholding method from Donoho and John-
stone (1994) are used for Gaussian white noise, while a level-dependent thresholding method from John-
stone (1999) works for cross-correlated Gaussian noise. Since WDFTCa is designed to be distribution-free,
we need a thresholding method that is both distribution-free and effective in the presence of cross correla-
tions among noise components. In this subsection, we propose a distribution-free thresholding method to
incorporate with WDFTCa.
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When the monitored process is in-control, the difference between an observed profile and the in-control
mean profile has zero expected value, E[d j] = E[Y j− f0] = 0, so does its DWT vector E[ω j] = E[Wd j] = 0.
Thus it would be best to suppress all components of ω j. Some existing thresholding methods can achieve
this goal at least in the asymptotic sense for Gaussian white noise model, for example, universal thresholds
that are mentioned above. On the other hand, when a shift occurs, the expected value of the difference
between an out-of-control profile Y j and an in-control mean profile f0 becomes f1− f0 , 0, so it is desirable
to keep more components after thresholding so that shifts can be detected faster. This implies that a desired
thresholding method in WDFTCa should satisfy the following three critical properties: (a) it is distribution-
free, (b) it keeps scaling coefficients but filters out most detail coefficients when in-control, and (c) it keeps
some detail coefficients in addition to scaling coefficients when out-of-control.

Property (b) helps monitored statistics satisfy the underlying assumption of Equation (5) (i.e., cumulative
sum statistics S±(k) behave like reflected Brownian motion processes when in-control). If we threshold
both scaling coefficients and detail coefficients, it is possible that there is no component survived after
thresholding for some profiles. Thus we may often obtain statistics with zero values, and behaviors of such
statistics are hardly approximated well by a Brownian motion process. Additionally, scaling coefficients
contain important information of profiles due to the nature of wavelet transform, such as the magnitude of
noise. Therefore we prefer to keep all scaling coefficients without thresholding. On the other hand, if the
number of preserved detail coefficients changes significantly from one profile to another when in-control,
which is often caused by small thresholds or high correlations between components, the variability of T 2-
type statistics becomes extremely large and it takes many observations until S±(k) exhibits appropriate
asymptotic behaviors. As a result, actual ARL0 of the control chart may be larger than the target value for
finite target ARL0. To ensure well-behaved T 2-type statistics when in-control, Property (b) is required.

Property (c) is critical to the effectiveness of control charts. Thresholds cannot be too large to filter out
all of the important coefficients when out-of-control, since shift information can also be filtered out. This
would cause a control chart inefficient in shift detection. It is recommended that one chooses relatively large
but not extremely large thresholds and keep more detail coefficients when out-of-control, so that T 2-type
statistics become larger and S±(k) exit control limits faster when a shift occurs. To ensure Properties (b)
and (c), we design our thresholding method in a way that it keeps all scaling coefficients and relatively large
outliers of detail coefficients only.

Next, we review the universal thresholding method and then propose our new thresholding method de-
veloped from the fourth moment Cornish-Fisher expansion from Bekki et al. (2009).

3.2.1 Universal Thresholds

Universal thresholds, developed by Donoho and Johnstone (1994), are one of the most well-known wavelet
thresholds. They provide some desirable asymptotic characteristics, which are stated below.

Lemma 1. If z1, z2,. . . ,zn are independent and identically distributed as a standard normal distribution,
P{max1≤i≤n |zi|>

√
2logn}→ 0 as n→ ∞. Therefore,

lim
n→∞

max1≤i≤n |zi|√
2logn

= 1, almost surely.

The universal threshold for the ith noise component is defined as λi =σi
√

2logn, where σi is the marginal
standard deviation of the ith component. Because the term

√
2logn is independent from distribution pa-

rameters, this thresholding method is called universal and known to be robust to different signals or profiles.
Supported by Lemma 1, universal thresholds are designed to filter out all detail coefficients asymptoti-

cally, so that zero components in the underlying mean profile are estimated as zero with high probability.
This implies that universal thresholds satisfy Property (b) and (c). However, those properties do not hold
any longer when noises are non-normal and/or have cross correlations. Averkamp and Houdré (2003) and
Averkamp and Houdré (2005) present thresholding methods for non-normal noises. But their thresholds
vary from distributions and have no closed forms, making it hard to implement. Besides, their thresholds
also tend to select more components than universal thresholds, violating Property (b). Instead, we present
a distribution-free thresholding method that has similar properties as the universal thresholding method.
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3.2.2 Cornish-Fisher Expansion Thresholds

We interpret the universal threshold by connecting it to a hypothesis testing:

H0 : E[ω j,i] = 0 versus H1 : E[ω j,i] , 0, for 2L < i≤ n and j = 1,2, . . . .

When |ω j,i| > σ̂ i
√

2logn, we reject H0 and keep ω j,i. Otherwise, we filter out ω j,i and set ω j,i = 0. Let
q = Φ(

√
2logn), where Φ represents the standard normal cumulative distribution function. If noises are

assumed to follow IID normal distributions, universal thresholds can be considered as q-quantile estimates.
We extend this idea to a general noise distribution as follows.

• If ω j,i < z1−q
i or ω j,i > zq

i , reject H0 and keep ω j,i, where z1−q
i and zq

i are the (1−q)- and q-quantiles
of the underlying distribution of ω j,i.
• Otherwise, filter out ω j,i and set ω j,i = 0.

In other words, critical quantile values z1−q
i and zq

i serve as the lower and upper thresholds forω j,i. By using
quantiles, we can determine whether a wavelet component is significant with an approximately similar
confidence level as universal thresholds, no matter what underlying distributions are. Moreover, as n→ 0,
q→ 1, Lemma 1 still holds.

For profiles with a moderate dimension size n = 512, the probability from universal thresholds is
q = Φ(

√
2log512) = 0.9998. The 0.9998-quantile is considered as an extreme quantile. It is known that

accurate estimation of extreme quantiles is difficult. However, for our purpose, we only need relatively good
thresholds that are large enough to guarantee Properties (a)–(c), instead of accurate quantile estimates. We
consider indirect quantile estimation with the Cornish-Fisher (CF) expansion from Bekki et al. (2009), be-
cause it can provide good quantile estimates with a moderate data set and low data storage requirements.
Additionally, experimental results in Bekki et al. (2009) show applaudable performance with the fourth
moment expansion. A q-quantile estimator from the CF expansion is defined as follows.

zq
i = µ̂ i + σ̂ ix

q
i , where xp

i = zq +
1
6
(z2

q−1)γ̂1i +
1

24
(z3

q−3zq)γ̂2i−
1

36
(2z3

q−5zq)γ̂
2
1i, (8)

where zq is the q-quantile of the standard normal distribution, and µ̂ i, γ̂1i and γ̂2i are sample mean, sample
central standardized skewness, and sample central standardized excess kurtosis for the ith component from
Phase I data, respectively.

Bekki et al. (2009) also point out that quantile estimates based on the CF expansion may be inaccurate
for extreme quantiles for skewed distributions, but perform reasonably well for symmetric distributions.
Since wavelet coefficients are weighted averages and tend to be more symmetric than the raw data, so the
CF expansion provides relatively good thresholds for WDFTCa.

Consider profiles with IID exponential noise distributions. We set the profile dimension n = 512 and
each noise component to follow centralized exponential distributions with parameter 1 (i.e., εi j ∼ exp(1)−
1, i = 1,2, . . . ,n, and j = 1,2, . . .). If we apply Haar DWT, the highest level of wavelet components is
difference of two exponential random variables, which follows the distribution, Laplace(0,1). We calculate
theoretical values of the 0.0002- and 0.9998-quantiles from Laplace(0,1) and also estimate them with the
CF expansion based on 500 randomly sampled noise vectors. Since wavelet components at the highest
level (n/2 < i ≤ n) follow the same distribution, we can obtain average and standard error (SE) of the
0.0002- and 0.9998-quantile estimates based on results of n/2 components. Table 2 provides average and
SE for the CF expansion (CF), and also provides theoretical values for the Laplace distribution (Laplace)
and universal thresholds (Universal). For IID exponential noises, the CF expansion provides more accurate
quantile estimates than universal thresholds and the CF estimates are also close to the theoretical values.
On the other hand, universal thresholds ±3.53 are clearly off for such a non-normal distribution.

3.2.3 Inflation Factor

With the probability q=Φ(
√

2logn) from universal thresholds, the CF expansion provides good thresholds
for independent normal and non-normal profiles. However, when positive cross correlations exist, more
components tend to survive after thresholding and associated T 2-type statistics change significantly from
one profile to another even when in-control. It becomes more difficult to achieve a good approximation of
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Table 2. Average and SE of the 0.0002- and 0.9998-quantile estimates for wavelet components at the
highest level.

The 0.0002-quantile The 0.9998-quantile
CF Universal Laplace CF Universal Laplace

Average 7.324 3.53 7.824 -7.537 -3.53 -7.824
SE 0.091 N/A N/A 0.105 N/A N/A

a Brownian motion process, and thus Equation (5) does not work well. We want to adjust q value when
there are strong correlations. To this end, we employ an inflation factor γ and redefine q = Φ(γ

√
2logn)

for estimating quantiles z1−q and zq.
Recall that Λ denotes the profile covariance matrix. When all components in a profile’s DWT are in-

dependent, Λi j = 0 for i , j. When there exist cross correlations among components in a profile’s DWT,
Λi j becomes nonzero for some i , j. Since positive correlations among detail coefficients or among detail
coefficients and scaling coefficients, cause more survived components after thresholding, we determine an
inflation factor by comparing the actual covariance matrix Λ and its “ideal” covariance matrix S, where S
has the same marginal variances for all coefficients as Λ (i.e., Sii = Λii), but zero correlation (i.e., Si j = 0
for i , j). Parameter t, set in Equation (9), can be interpreted as a measure of similarity between the actual
covariance matrix Λ and its “ideal” covariance matrix S. If Λ= S, i.e., all profile variables are independent,
t is equal to 1; while t becomes small if Λ and S are different.

When Λ and S are quite different, 1/
√

t turns to be very large. However, if an inflation factor is too large,
less components survive and Property (c) is violated. Therefore we set an upper bound for an inflation
factor in Equation (10). We recommend to take γmax = 1.5 to maintain Property (c). Note that without an
inflation factor, estimated quantiles by CF expansion are already quite large, therefore an inflation factor
should be relatively small and 1.5 is a good empirical choice. Algorithm CFI as follow states procedures
for computing an inflation factor γ .

Algorithm CFI
The inflation factor γ is determined by the following steps.

1. Let Λ= Λ̃0(r), where Λ̃0(r) is a covariance matrix estimate in (4).
2. Set an n×n matrix S with Sii = Λii and Si j = 0 for i , j and 1≤ i, j ≤ n.
3. Calculate a correlation-type statistic t as follows.

t =
∑1≤i, j≤n (Λi j− Λ̄)(Si j− S̄)√(

∑1≤i, j≤n (Λi j− Λ̄)2
)(

∑1≤i, j≤n (Si j− S̄)2
) , (9)

where Ā = ∑1≤i, j≤n Ai j/n2 for any matrix A.
4. Set an inflation factor

γ = min(
1√

t
,γmax) (10)

and let q = Φ(γ
√

2logn).

We prove 0 < t ≤ 1 and 1 ≤ γ ≤ 1.5 in the Appendix. If profiles have independent noises, t equals to
1 and inflation factor γ also equals to 1, so the probability q is as same as the probability from universal
thresholds. Additionally, a small t implies that a big discrepancy between the actual covariance matrix
and the “ideal” case, and thus both γ and thresholds take larger values. On the other hand, when cross
correlation is low, t takes large values and γ is small. Additionally, when negative correlations exist in Λ,
we get a larger t (or γ close to 1), compared to the case where all correlations are positive with the same
level of correlation. WDFTCa with CF thresholds is given as below.
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Step 2 of Procedure WDFTCa
By employing CF thresholds, Step 2 of WDFTCa states as follows.

2. For i = 1, . . . ,n, calculate sample mean µ̂ i, sample standard deviation σ̂ i, sample central standardized skew-
ness γ̂1i, and sample central standardized excess kurtosis γ̂2i, from {ωk,i(r) : k = 1, . . . ,bN/rc}, whereωk,i(r)
is the ith component of the kth batch means vector ωk(r). Then determine the inflation factor γ as Equa-
tion (10) from Algorithm CFI. Obtain q = Φ(γ

√
2logn), and calculate corresponding estimated quantiles

z1−q
i and zq

i from Equation (8). The lower and upper thresholds λL and λU are determined by

λL = {z1−q
1 , . . . ,z1−q

n } and λU = {zq
1, . . . ,z

q
n}.

3.3 Covariance Matrix Estimation

When WDFTCa constructs T 2-type statistics, a covariance matrix estimate of profile DWTs is required, if
the true covariance matrix is unknown. Because the locations of survived DWT components vary from one
profile to another, we need the information of the entire n×n covariance matrix.

Several researchers developed some covariance matrix estimation methods for high-dimensional vectors,
such as Bickel and Levina (2008) and Cai and Yuan (2012). We employ the regularization method from
Bickel and Levina (2008), because their method is robust to different forms of high-dimensional covariance
matrices and easy to implement as shown in Lee et al. (2012). Bickel and Levina (2008) divide the data
set into two groups with the ratio (logN− 1) : 1, where N is the size of the data set, and obtain sample
covariance matrices for each group, Σ̂1 and Σ̂2, and search for a threshold s that minimizes the difference
between the thresholded Σ1 by s and Σ2 in the Frobenius metric. Then the covariance matrix estimate is
calculated by thresholding the sample covariance of the entire data set with s.

Algorithm CMR is the regularization method from Bickel and Levina (2008) and also used in Lee et al.
(2012), but Lee et al. (2012) use a splitting ratio 2 : 3 that does not perform well for higher dimensional
profiles. Note that we work with n×n matrix, while Lee et al. (2012) work with p× p matrix, where p� n.
We find that the original splitting ratio (logN− 1) : 1 in Bickel and Levina (2008) performs better. Thus
Algorithm CMR employs the splitting ratio (logN−1) : 1 for covariance matrix estimation.

4. Experiments

In this section, we test two different in-control mean profiles: Mallat’s piecewise smooth function and
the LRS data from a lumber manufacturing process. We present comprehensive experimental results of
WDFTCa and compare with its competitor WDFTCs mentioned in Section 2.2. Recall that WDFTCs is
an effective wavelet-based control chart with static selection, i.e., only monitoring a subset of wavelet
components. On the other hand, WDFTCa monitors adaptively selected wavelet components that vary for
different sample profiles.

4.1 Mallat’s Piecewise Function

To investigate the effectiveness of WDFTCa, we take Mallat’s piecewise smooth function as the in-control
mean profile and test processes on various noise distributions and shifts. We assume that the true covariance
matrix of profiles is known for Mallat’s piecewise smooth function, but this assumption is relaxed for the
LRS data in the next subsection.

We take n = 512 equally spaced data points from each observed profile and apply Symmlet 8 wavelets
with the coarsest level of resolution L = 5. The size of Phase I data set is N = 20,000. Set the target
ARL0 = 200 and actual ARL0 and ARL1 are calculated based on 1000 independent replications. Since we
use the true covariance matrix, the batch size cannot be determined by a sample covariance matrix, we use
the average batch size reported in Lee et al. (2012) as our batch size for both WDFTCs and WDFTCa. For
example, the average batch size of WDFTCs for IID standard normal noises is 3 from Table 4 in Lee et al.
(2012), and thus we use 3 as batch size in both WDFTCs and WDFTCa. The inflation factor is determined
by comparing the true covariance matrix with its “ideal” case.
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Additionally, the weight in WRRE for WDFTCs is set to 0.5 for Mallat’s piecewise smooth function, and
thus 62 fixed components are selected to construct their statistics.

4.1.1 Shift Configurations

The out-of-control mean profile is set to be f1 = f0 +ηζσ, where shift size η ∈ {0.25,0.5,0.75,1,2} and
σ = (σ1, . . . ,σn)

T is the vector of marginal standard deviations of profiles. We define distinctive shifts by
using different ζ. First, ζ has a form of a diagonal matrix, i.e., ζ = ∆, where ∆= diag(δ1, . . . ,δn). We define
four shifts as follows.

• Global straight line shift (G1): δi = 1 for i = 1, . . . ,n.
• Global stepwise shift (G2): δi = 1 for i = 1, . . . ,n/2 and δi =−1 for i = n/2+1, . . . ,n.
• Local straight line shift (L1): δi = 1 for i ∈A1 = {3,4, . . . ,15}∪{344,345, . . . ,347} and δi = 0 for

i <A1.
• Local flare shift (L2): δi = (i−480)/32 for i ∈A2 = {481, . . . ,512} and δi = 0 for i <A2.

Next, ζ changes its form to ζ = W−1Θ, where Θ= diag(θ1, . . . ,θn), a diagonal matrix defined as the same
as Section 2.2, only affecting non-selected components from the static selection in WDFTCs.

• Wavelet global shift (WG): θi = 1 in ζ1, for i = 1, . . . ,n, see Figure 2 (Left).
• Wavelet local shift (WL): θi = 1 in ζ2, for i ∈ B1 = {80,81, . . . ,88} and θi = 0 for i < B1, see

Figure 2 (Right).

4.1.2 Noise Distributions

We consider three multivariate normal distributions, SMN, CMN and GMN, with mean zero and covariance
matrices ΣS, ΣCN , and ΣG, respectively, and two multivariate shifted exponential distributions, EXP and
CEXP, with mean zero and covariance matrices ΣE and ΣCE , respectively. All five noise distributions SMN,
CMN GMN, EXP and CEXP, with their covariance matrices are defined as below.

• SMN: ΣS = In, where In is an n×n identity matrix.
• CMN: All diagonal elements in ΣCN are equal to 1 and all off-diagonal elements in ΣCN have value

0.5.
• GMN: Diagonal elements [ΣG]ii are taken from Example 2 of Gao (1997), defined as Equation (11)

with values from 9.5 to 14.8, and off-diagonal elements are [ΣG]i1,i2 = [ΣG]
1/2
i1i1

[ΣG]
1/2
i2i2

ρ(i1− i2) for
i1 , i2, where ρ(·) are determined by the following Equation (12), originally taken from von Sachs
and MacGibbon (2000).

[ΣG]ii = σ
2
0

(
1+
{

0.5−2.5
[
(i−1)/n−0.515

]2}2
)2

, where σ
2
0 = 9.50. (11)

ρ(`) = Corr[εi, j,εi+`, j] = (−α2)
|`/2|

[
sin(|`|ω+ξ )

sin(ξ )

]
, where `= 0,±1, . . . ,±(n−1),α1 =

4
3
,

α2 =−
8
9
,ω= cos−1

[
α1

2
√
−α2

]
� 0.785,ξ = tan−1

[
1−α2

1+α2
tan(ω)

]
� 1.51. (12)

• EXP: ΣE = In, the same as ΣS.
• CEXP: We employ the NORTA method in Cario and Nelson (1996) to generate CEXP, by transform-

ing a CMN vector into a shifted exponential (CEXP) vector. Thus the covariance matrix ΣCE has
diagonal elements [ΣCE ]ii = 1 and off-diagonal elements [ΣCE ]i1,i2 close to 0.5 but slightly less than
0.5 on the average.

4.1.3 Results

We first present the actual values of ARL0 delivered by WDFTCs and WDFTCa for various distributions.
Table 3 shows that WDFTCs delivers an actual value of ARL0 close to the target, while WDFTCa delivers
an actual value of ARL0 that slightly deviates from the target. This is mainly due to the larger variance of
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the T 2-type statistics used in WDFTCa compared with WDFTCs. Thus we get a less accurate estimate of
the relevant covariance matrix with 20,000 Phase I data. However, we confirm that this problem goes away
when we increase Phase I data. Nevertheless, the deviation from target 200 in Table 3 is acceptable.

Table 3. Actual ARL0 from WDFTCs and WDFTCa for Mallat’s piecewise smooth function under various
noise distributions.

Noise type r̄ γ WDFTCs WDFTCa

SMN 3 1.00 202.61 190.62
CMN 3 1.50 204.22 199.58
GMN 8 1.29 196.42 197.26
EXP 3 1.00 196.57 195.91
CEXP 3 1.50 203.99 214.33

Tables 4–5 compare ARL1 between WDFTCs and WDFTCa. For all tested noise distributions, both con-
trol charts are able to detect the first four shifts (G1, G2, L1, and L2), but WDFTCa outperforms WDFTCs.
Moreover, WDFTCa performs significantly better than WDFTCs on small shift size. For example, when
shift size η = 0.25, WDFTCa detects local shifts L1 and L2 by 9.4% to 32.2% faster than WDFTCs, where
local shifts are more difficult to detect than global ones. Furthermore, WDFTCa can effectively detect
wavelet shifts ζ1 and ζ2, where WDFTCs fails. Even though correlations in the CEXP noise distribution
lead to a large inflation factor and make it difficult for WDFTCa to detect wavelet shifts until the shift size
η reaches 2, WDFTCa still performs better than WDFTCs because WDFTCs cannot detect wavelet shifts
of any size. Results with the theoretical covariance matrix for Mallat’s piecewise smooth function show
that WDFTCa performs better than WDFTCs in most scenarios and also detects shifts missed by WDFTCs.

4.2 Lumber Manufacturing Process

We compare experimental results between WDFTCs and WDFTCa for LRS data from a lumber manufac-
turing process. LRS data are generated by a statistical model developed in Staudhammer et al. (2005) and
implemented in Staudhammer, Kozak, and Maness (2006), Staudhammer, Maness, and Kozak (2007) and
Lee et al. (2012). An LRS profile is the thickness of a large number of tested points on a sawed board,
measured along a vertical line from an edge of the board, by an LRS at a certain location of the sawed
board.

Given a saw configuration, a board type and a LRS location, a sampled LRS profile is Y j =
{Yj,1, . . . ,Yj,n}, where Yj,i = f0,i + ε j,i is the measured thickness of the jth board at the ith horizontal dis-
tance xi cm along the length of the board, i= 1, . . . ,n, and f0,i denotes the true mean of thickness at the same
tested point. f0 = { f0,1, . . . , f0,n} is the in-control mean of LRS data, taken over the population. However,
f0 shown in Figure 3, cannot be presented by an explicit form.

 2.53

 2.54

 2.55

 2.56

 2.57

 2.58

 2.59

 2.6

 0  500  1000  1500  2000

LRS

Figure 3. LRS data from a lumber manufacturing process (cm).

We take n = 2048 tested points on each sawed board and again use Symmlet 8 wavelets with the coarsest
level of resolution L = 5. Set the target ARL0 to 370 and the size of Phase I data to N = 30,000. Delivered
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Table 4. ARL1 for Mallat’s piecewise smooth function with SMN, CMN and GMN noise vectors.

SMN CMN GMN
Shift type η WDFTCs WDFTCa WDFTCs WDFTCa WDFTCs WDFTCa

G1 0.25 3.81 3.44 195.45 191.12 8.00 8.00
0.5 3.00 3.00 150.01 123.36 8.00 8.00
0.75 3.00 3.00 86.27 62.03 8.00 8.00
1 3.00 3.00 49.86 34.14 8.00 8.00
2 3.00 3.00 12.69 9.38 8.00 8.00

G2 0.25 3.88 3.51 3.00 3.00 8.00 8.00
0.5 3.00 3.00 3.00 3.00 8.00 8.00
0.75 3.00 3.00 3.00 3.00 8.00 8.00
1 3.00 3.00 3.00 3.00 8.00 8.00
2 3.00 3.00 3.00 3.00 8.00 8.00

L1 0.25 123.58 103.38 73.12 51.56 40.42 28.34
0.5 33.63 30.83 18.15 13.16 11.81 9.08
0.75 15.58 13.78 8.65 6.69 8.02 8.00
1 9.09 8.08 5.55 4.12 8.00 8.00
2 3.03 3.00 3.00 3.00 8.00 8.00

L2 0.25 141.21 116.22 84.31 60.26 44.88 30.43
0.5 40.26 35.06 21.31 15.20 13.58 9.76
0.75 17.84 15.89 9.80 7.38 8.07 8.00
1 10.47 9.47 6.18 4.77 8.00 8.00
2 3.16 3.07 3.00 3.00 8.00 8.00

WG 0.25 200.64 58.88 191.77 189.33 203.66 8.00
0.5 197.93 11.96 198.71 139.10 203.87 8.00
0.75 198.33 4.19 213.91 31.00 201.18 8.00
1 195.84 3.01 202.34 6.14 202.12 8.00
2 201.35 3.00 198.42 3.00 190.07 8.00

WL 0.25 205.53 161.06 199.45 196.02 203.02 190.21
0.5 207.34 49.86 210.75 125.44 188.08 145.39
0.75 202.78 11.03 202.32 13.24 204.72 58.94
1 200.93 4.39 200.85 3.43 200.82 18.97
2 200.46 3.00 193.36 3.00 202.68 8.00

ARL’s are calculated based on 1000 independent replications. For LRS data, we estimate covariance matrix
by using Algorithm CMR with ratio (logN−1) : 1.

Additionally, the weight in WRRE for WDFTCs is set to 0.7 for LRS data, and thus 92 fixed components
are selected to construct their statistics.

4.2.1 Noise Distributions

As mentioned early, Staudhammer, Kozak, and Maness (2006) points that the thickness of a sawed board
is affected by a saw configuration, a board type and an LRS location, and thus noise components have the
form

ε j,i = f (xi)+B j +Lv +BL jv + ` jvi for i = 1, . . . ,n, (13)

where: (a) B j ∼ N(0,σ2
B) with σB = 0.0204 cm, is the random effect of the jth sample board; (b) Lv ∼

N(0,σ2
L) with σL = 0.0052 cm, is the random effect of the vth laser location; (c) BLuv ∼ N(0,σ2

BL) with
σBL = 0.0238 cm, is the random effect caused by the interaction of the board and laser-location effects;
(d) ` jvi is the random affect arising from the interaction of the board, laser-location and the distance xi
along the board, so that the process {` jvi : i = 1, . . . ,n} is assumed to be stationary and represented by an
ARIMA(1,1,1) time series model, where

(1−αB)(` jvi− ` jv(i−1)) = (1−βB)εi for i = 1,2, . . . , (14)
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Table 5. ARL1 for Mallat’s piecewise smooth function with EXP and CEXP noise vectors.

EXP CEXP
Shift type η WDFTCs WDFTCa WDFTCs WDFTCa

G1 0.25 4.23 4.32 199.33 172.44
0.5 3.00 3.00 171.77 153.04
0.75 3.00 3.00 157.02 111.57
1 3.00 3.00 131.06 75.63
2 3.00 3.00 43.50 19.82

G2 0.25 4.35 4.39 6.05 3.34
0.5 3.00 3.00 3.00 3.00
0.75 3.00 3.00 3.00 3.00
1 3.00 3.00 3.00 3.00
2 3.00 3.00 3.00 3.00

L1 0.25 139.06 124.92 185.56 138.96
0.5 38.49 36.97 66.38 34.26
0.75 17.20 16.54 27.54 15.12
1 9.93 9.67 15.37 8.84
2 3.09 3.02 5.06 3.00

L2 0.25 145.67 131.99 191.12 148.23
0.5 44.50 43.58 76.19 41.38
0.75 19.94 19.45 33.38 17.61
1 11.22 11.08 17.87 10.23
2 3.43 3.33 5.57 3.01

WG 0.25 206.36 117.92 202.43 218.82
0.5 199.38 38.63 209.50 215.50
0.75 201.11 13.64 208.58 211.14
1 197.65 6.39 210.53 207.17
2 208.70 3.00 203.63 160.85

WL 0.25 203.22 178.99 207.62 211.78
0.5 203.96 99.86 210.83 206.97
0.75 202.04 22.81 201.89 211.72
1 211.41 6.96 209.04 203.71
2 197.41 3.00 211.53 5.31

where: (a) B is the backshift operator so that (1−αB)` jvi = ` jvi−α` jv(i−1); and (b) {εi : i = 1,2, . . .} is a
white noise process, where εi ∼N(0,σ2

ε ) with σ̂ε = 0.00967 cm. Staudhammer, Kozak, and Maness (2006)
use the autoregressive parameter α̂ = 0.00053 cm and the moving-average parameter β̂ = 0.00178 cm.

4.2.2 Shift Configurations

We take the same four types of process faults as Lee et al. (2012): machine positioning problem (MPP),
taper, flare and snake, see Figure 4, and briefly explain their causes and associated shifts as follows. Set
δ = {δ1, . . . ,δn} as an associated shift vector, and thus the out-of-control mean profile has the form f1 =
f0 +δ. More details can be found in Staudhammer, Kozak, and Maness (2006) and Staudhammer, Maness,
and Kozak (2007).

• MPP is caused by incorrect positions of saw guides and results in a uniform change in thickness
along the length of the board, with δi = τ for i = 1, . . . ,n
• Taper is caused by machine misalignment and results in a gradual increment or decrement in the

board thickness along the length of the board, with δi = xiτ/xn for i = 1, . . . ,n.
• Flare is caused when feed roll does not engage at a proper time, and results in an unexpected incre-

ment in the board thickness at the end of the board, with δi = 0 for i< i0 and δi = (xi−xi0)τ/(xn−xi0)
for i≥ i0, where i0 = max{i : xi < xn−15}.
• Snake is usually caused by several saw problems and results in a waveform with the period along the
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Figure 4. Four major types of process faults.

length of the board, with δi = τ sin(2πxi/P) for i = 1, . . . ,n, where τ is the amplitude and the period
P = 182.88 cm.

Parameter τ takes values from {0.0254, 0.0508, 0.0762, 0.1016} cm for MPP, while τ ∈ {0.0508, 0.1016,
0.1524, 0.2032} cm for others.

4.2.3 Results

From Algorithm CFI, we obtain an inflation factor for WDFTCa from each replication and the average of
1000 replications is γ̄ = 1.35. Table 6 show ARL0 and ARL1 for both WDFTCs and WDFTCa. Both charts
deliver actual ARL0 close to the target value, but WDFTCa performs significantly better than WDFTCs
for all shifts and detects some shifts with almost half observed profiles compared to WDFTCs. Similar to
Mallat case, WDFTCa achieves more ARL1 saving on small shifts. For some shifts that are difficult to
detect, such as flare, WDFTCa uses less than 28.9% to 42.9% observed profiles than WDFTCs, and this
saving is larger than some global shifts, such as MPP.

WDFTCa keeps only 32.000022 components on the average when in-control, including all 2L = 32 scal-
ing coefficients. On the other hand, WDFTCs selects 92 components for each observed profile. WDFTCa
does not only select significantly fewer wavelet components than WDFTCs, but also chooses components
adaptively with as much information as possible. Moreover, fewer monitored components speed up shift de-
tecting and especially benefits small shifts, see Jeong, Lu, and Wang (2006). Hence WDFTCa outperforms
WDFTCs on LRS data and achieves practical improvement.

5. Conclusion

We develop a wavelet-based control chart with adaptive thresholds for high-dimensional profiles with gen-
eral noise distributions and some correlations. The main idea of WDFTCa is to employ an adaptive thresh-
olding method to select a small number of wavelet components when in-control and more components when
out-of-control. CF thresholds are the adaptive thresholds implemented in WDFTCa and can be considered
as the lower and upper quantiles associated with the probability of universal thresholds in the standard
normal distribution. WDFTCa performs well for high-dimensional profiles and is especially sensitive to
small shifts and/or local shifts. It can also detect shifts that are missed by existing wavelet-based control
charts with static selection. Experimental results show WDFTCa outperforms WDFTCs for both Mallat’s
piecewise smooth function and LRS data. WDFTCa achieves significant improvement with LRS data and
reveals its potential in real applications.
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Table 6. ARL’s for LRS data.

τ WDFTCs WDFTCa

ARL0 0 361.72 367.23

MPP 0.0254 156.48 138.74
0.0508 43.18 38.87
0.0762 20.94 19.86
0.1016 13.65 12.75

Taper 0.0508 168.92 89.06
0.1016 46.47 27.11
0.1524 22.24 13.40
0.2032 14.07 9.71

Flare 0.0508 269.26 153.87
0.1016 91.75 65.27
0.1524 42.30 27.81
0.2032 24.45 14.08

Snake 0.0508 88.29 57.07
0.1016 23.85 16.73
0.1524 12.54 9.49
0.2032 10.17 8.19
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Appendix

Procedure WDFTCs

Procedure WDFTCs
Phase I—Obtain the n×1 DWT of the in-control mean profile θ0 and assign weights q and 1−q (0≤ q≤ 1), to the
compression ratio and reconstructed error of the in-control mean profile f0 in WRRE, which is defined in Equation
(6) from Lada, Lu, and Wilson (2002). Then determine p (p < n) wavelet locations of θ0 that minimize WRRE.
WDFTCs monitors p components from selected locations instead of all n components in each DWT. For observed
in-control profiles {Y j : j = 1, . . . ,N}, follow the following steps.

1. For j = 1, . . . ,N, obtain the reduced-dimension DWT ω#
j , by keeping components from the selected wavelet

locations in the DWT ω j = W(Y j− f0). Calculate sample covariance matrix, denoted as Λ#
0, from {ω#

j : j =
1, . . . ,N}.

2. Apply Algorithm CMR (see Figure 3 in Lee et al. (2012)) to regularize Λ#
0 and obtain Λ̃#

0.
3. Determine the batch size r by Algorithm BSD (see Figure 4 in Lee et al. (2012)) and calculate non-

overlapping batch means, ω#
1(r), . . . ,ω

#
bN/rc(r), where ω#

k (r) = r−1
∑

r
u=1ω

#
(k−1)r+u. Let Λ̃#

0(r) = Λ̃
#
0/r. The

Hotelling’s T 2-type statistic is constructed as

T 2
k (r) =

(
ω#

k (r)
)T
(
Λ̃#

0(r)
)−1

ω#
k (r), for k = 1, . . . ,bN/rc. (15)

4. Calculate sample mean µ̂T 2(r) and sample variance σ̂2
T 2(r) of T 2

k (r). With K = 0.1σ̂T 2(r) and a prespecified
in-control average run length ARL0, solve the root H from Equation (5).

Phase II—Obtain new observed profiles {Y j : j = 1,2, . . .} and compute non-overlapping batch means Yk(r) =
r−1

∑
r
u=1Y(k−1)r+u, for k = 1,2, . . ..

5. Compute the DWT of the kth batch mean ωk(r) = WYk(r) and its reduced-dimension version ω#
k (r), for

k = 1,2, . . ..
6. Raise an alarm when S+(k)≥ H or S−(k)≥ H, where S±(k) is defined in (6).

Proof of 0 < t ≤ 1

We prove 0 < t ≤ 1 for Equation (9) and thus γ = 1/
√

t ≥ 1. First set the difference between two matrix
averages to be ∇ = Λ̄− S̄. Next we show

Λ̄< nS̄. (16)

Note that 1≤ i, j ≤ n, and
n2Λ̄ = ∑

i
∑

j
Λi j = ∑

i
Λii +∑

i
∑
j,i
Λi j

≤∑
i
Λii +∑

i
∑
j,i

√
ΛiiΛ j j

≤∑
i
Λii +∑

i
∑
j,i

Λii +Λ j j

2

= n∑
i
Λii = n∑

i
Sii = n3S̄, (17)

where the first inequality holds due to the property of correlation; the second inequality holds due to the
inequality of arithmetic and geometric means and Λii ≥ 0, 1 ≤ i ≤ n. On the other side, the equality holds
only when all elements inΛ are the same, i.e.,Λi, j = c, 1≤ i, j≤ n and c is a fixed constant. SuchΛ implies
that all variables are perfectly positive correlated, which is impossible in reality. Therefore strict inequality
(16) holds. Since the denominator of t is always positive, we first check the sign of the numerator.

20



∑
i

∑
j
(Λi j− Λ̄)(Si j− S̄) = ∑

i
∑
j,i
(Λi j− Λ̄)(0− S̄)+∑

i
(Λii− Λ̄)(Sii− S̄)

= ∑
i

∑
j,i
(Λi j− Λ̄)(−S̄)+∑

i
(Sii− S̄)2−∇∑

i
(Sii− S̄). (18)

Equation (18) holds due to the definition of S, Λii = Sii for 1≤ i≤ n, and Λ̄= S̄+∇. Further,

∑
i

∑
j,i
(Λi j− Λ̄) = ∑

i
∑
j,i
Λi j−n(n−1)Λ̄= ∑

i
∑

j
Λi j−∑

i
Λii−n(n−1)Λ̄

= n2Λ̄−n2S̄−n(n−1)Λ̄= nΛ̄−n2S̄ = n(S̄+∇)−n2S̄ (19)

= n(1−n)S̄+n∇

∇∑
i
(Sii− S̄) = ∇(∑

i
Sii−nS̄) = ∇(n2S̄−nS̄) (20)

where (19) holds due to ∑i ∑ jΛi j = n2Λ̄ and (20) holds due to (17). Then

(18) = n(n−1)S̄2−n∇S̄+∑
i
(Sii− S̄)2−n2

∇S̄+n∇S̄

= n2S̄2−nS̄2 +∑
i

S2
ii−2∑

i
SiiS̄+nS̄2−n2S̄∇

= ∑
i

S2
ii−n2S̄2−n2S̄∇ (21)

= ∑
i

S2
ii−n2S̄Λ̄

> ∑
i

S2
ii−n2S̄nS̄ = ∑

i
S2

ii−
(∑i Sii)

2

n
(22)

≥∑
i

S2
ii−

n∑i S2
ii

n
= 0 (23)

Inequality (22) holds due to Inequality (16). The last inequality (23) employs Jensen’s inequality. Therefore
t > 0 holds for any Λ. According to Cauchy–Schwarz inequality,[

∑
i

∑
j
(Λi j− Λ̄)(Si j− S̄)

]2

≤

(
∑

i
∑

j
(Λi j− Λ̄)2

)(
∑

i
∑

j
(Si j− S̄)2

)
,

thus it is guaranteed that t ≤ 1 and thus γ ≥ 1. By definition of γ in (10), 1≤ γ ≤ 1.5.
Additionally, when negative correlations exist in Λ, ∇, the difference between Λ̄ and S̄ gets smaller

and the numerator of t gets larger due to (21), compared to the covariance matrix with the same level of
correlation but all positively correlated, i.e., a matrix with the absolutely value of Λ.
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